
Parallel Programming Models,
Languages and Compilers

Points to be covered
• Parallel Programming Models-

Shared-Variable Model, Message-Passing Model, Data-
Parallel Model, Object Oriented Model, Functional and
Logic Models

• Parallel Languages and Role of Compilers-
Language Features for Parallelism, Parallel Language
Constructs, Optimizing Compilers for Parallelism

• Code Optimization and Scheduling-
Scalar Optimization with Basic Blocks, Local and Global

Optimizations, Vectorization and Parallelization
Methods, Code Generation and Scheduling, Trace
Scheduling Compilation

10.1 Parallel Programming Model

• Programming model->simplified and
transparent view of computer
hardware/software system.

• Parallel Programming Model are specifically
designed for multiprocessors, multicomputer
or vector/SIMD computers.

Classification

• We have 5 programming models-:
Shared-Variable Model
Message-Passing Model
Data-Parallel Model
Object Oriented Model
Functional and Logic Models

Shared Variable Model

• In all programming system, processors are active
resources and memory & IO devices are passive
resources.

• Program is a collection of processes.
• Parallelism depends on how IPC(Interprocess

Communication) is implemented.
• Process address space is shared.
• To ensure orderly IPC ,a mutual exclusion

property requires that shared object must be
shared by only 1 process at a time.

Shared Variable communication

• Used in multiprocessor programming
• Shared variable IPC demands use of shared

memory and mutual exclusion among multiple
processes accessing the same set of variables.

Shared Variable
in common

memory

Process A

Process C

Process B

Critical Section

• Critical Section(CS) is a code segment
accessing shared variable, which must be
executed by only one process at a time and
which once started must be completed
without interruption.

Critical Section Requirements

• It should satisfy following requirements-:
 Mutual Exclusion
At most one process executing CS at a time.
No deadlock in waiting
No circular wait by 2 or more process.
No preemption
No interrupt until completion.
Eventual Entry
Once entered CS,must be out after completion.

Protected Access

• Granularity of CS affects the performance.
• If CS is too large,it may limit parallism due to

excessive waiting by process.
• When CS is too small,it may add unnecessary

code complexity/Software overhead.

4 operational Modes

• Multiprogramming
• Multiprocessing
• Multitasking
• Multithreading

Multiprogramming

• Multiple independent programs running on
single processor/multiprocessor by time
sharing use of system resource.

• When program enters the I/O mode, the
processor switches to another program.

Multiprocessing

• When multiprogramming is implemented at the
process level on a multiprocessor, it is called
multiprocessing.

• 2 types of multiprocessing-:
 If interprocessor communication are handled at

the instruction level, the multiprocessor operates
in MIMD mode.

 If interprocessor communication are handled at
the program,subroutine or procedure level, the
multiprocessor operates in MPMD mode.

Multitasking

• A single program can be partitioned into
multiple interrelated tasks concurrently
executed on a multiprocessor.

• Thus multitasking provides the parallel
execution of 2 or more parts of single
program.

Multithreading

• The traditional UNIX/OS has a single threaded
kernal in which 1 process can receive OS
kernal service at a time.

• In multiprocessor we extend single kernal to
be multithreaded.

• The purpose is to allow multiple threads of
light weight processes to share same address
space.

Partitioning and Replication

• Goal of parallel processing is to exploit
parallelism as much as possible with lowest
overhead.

• Program partitioning is a technique for
decomposing a large program and data set
into many small pieces for parallel execution
by multiple processors.

• Program partitioning involves both
programmers and compilers.

Partitioning and Replication

• Program replication refers to duplication of
same program code for parallel execution on
multiple processors over different data sets.

Scheduling and Synchronization

• Scheduling further classified-:
Static Scheduling
• It is conducted at post compile time.
• Its advantage is low overhead but shortcomings is a

possible mismatch with run time profile of each task.
Dynamic Scheduling
• Catches the run time conditions.
• Requires fast context switching,premption and much

more OS support.
• Advantage include better resource utilization at

expense of highest scheduling overhead.

Cache Coherence & Protection

• Multicache coherance problem demands an
invalidation or update after each write
operation.

Message Passing Model

• Two processes D and E residing at different
processor nodes may communicate with each
other by passing messages through a direct
network.

• The messages may be instructions, data,
synchronization or interrupt signals etc.

• Multicomputers are considered loosely
coupled multiprocessors.

IPC using Message Passing

Message(Send/Recieve)
Process D Process E

Synchronous Message Passing

• No shared Memory
• No mutual Exclusion
• Synchronization of sender and reciever

process just like telephone call.
• No buffer used.
• If one process is ready to cummunicate and

other is not, the one that is ready must be
blocked.

Asynchronous Message Passing

• Does not require that message sending and
receiving be synchronised in time and space.

• Arbitrary communication delay may be
experienced because sender may not know if and
when the message has been received until
acknowledgement is received from receiver.

• This scheme is like a postal service using mailbox
with no synchronization between senders and
recievers.

Data Parallel Model

• Used in SIMD computers
• Parallelism handled by hardware

synchronization and flow control.
• Fortran 90 ->data parallel lang.
• Require pre-distributed data sets.

Data Parallelism

• This technique used in array processors(SIMD)
• Issue->match problem size with machine size.

Array Language Extensions

• Various data parallel language used
• Represented by high level data types
• CFD for Illiac 4,DAP fortran for Distributed

array processor, C* for Connection machine
• Target to make the number of PE’s of problem

size.

Object Oriented Model

• Objects dynamically created and manipulated.
• Processing is performed by sending and

receiving messages among objects.

Concurrent OOP

• Need of OOP because of abstraction and
reusability concept.

• Objects are program entities which
encapsulate data and operations in single unit.

• Concurrent manipulation of objects in OOP.

Actor Model

• This is a framework for Concurrent OOP.
• Actors->independent component
• Communicate via asynchronous message

passing.
• 3 primitives->create, send to and become.

Parallelism in COOP

• 3 common patterns for parallelism-:
1)Pipeline concurrency

overlapped enumeration of successive solutions and
concurrent testing of solutions

2)Divide and conquer
concurrent elaboration of different subprograms and
combining of their solutions to produce a overall problem
solution

3)Cooperative Problem Solving
aims at mutually-supported agreements, improved
relationships, and continued problem-solving capacity among
the parties.

Functional and logic Model

• Functional Programming Language->
Lisp,Sisal and Strand 88.
Logic Programming Language->
Concurrent Prolog and Parlog

Functional Programming Model

• Should not produce any side effects.
• No concept of storage, assignment and

branching.
• Single assignment and data flow language

functional in nature.

Logic Programming Models

• Used for knowledge processing from large
database.

• Supports implicitly search strategy.
• AND-parallel execution and OR-Parallel

Reduction technique used.
• Used in artificial intelligence

10.2 Parallel Language and Compilers

• Programming environment is collection of s/w
tools and system support.
– Parallel Software Programming environment

needed.

• Users still forced to focus on hardware details
rather than parallelism using high level
abstraction.

10.2.1 Language Features For
Parallelism

• Optimization Features
• Availability Features
• Synchronization/communication Features
• Control Of Parallelism
• Data Parallelism Features
• Process Management Features

Optimization Features

• Theme->Conversion of sequential Program to
Parallel Program.

• The purpose is to match s/w parallelism with
hardware parallelism.

• Software in Practice-:
1)Automated Parallelizer

Express C automated parallelizer and Allaint FX
Fortran compiler.

2)Semiautomated Parallizer
Needs compiler directives or programmers
interaction.

3) Interactive restructure support
static analyzer, run-time statistics and code
translator for restructuring.

Availability Features

• Theme-:Enhance user friendliness, make
language portable for large no of parallel
computers and expand the applicability of
software libraries.

1)Scalability
Language should be scalable to number of
processors and independent of hardware
topology.

2)Compatibility
Compatible with sequential language.

3)Portability
Language should be portable to shared memory
multiprocessor, message passing or both.

Synchronization/Communication
Features

• Shared Variable (locks) for IPC.
• Single assignment language.
• Send/receive for message passing.
• Logical shared memory such as the row space

in Linda.
• Remote procedure call.
• Data flow languages such as id.
• Mailbox, Semaphores, Monitors

Control Of Parallelism

• Coarse, Medium and fine grain
• Explicit vs implicit parallelism
• Global Parallelism
• Loop Parallelism
• Task Parallelism
• Divide and Conquer Parallelism

Data Parallelism Features

Theme-:how data is accessed and distributed in
either SIMD and MIMD computers.

1)Runtime automatic decomposition
Data automatically distributed with no user
interaction.

2)Mapping Specification
User specifies patterns and input data mapped
to hardware.

3) Virtual Processor Support
Compilers made statically and maps to physical
processor.

4) Direct Access to shared data
Shared data is directly accessed by operating
system.

Process Management Features

Theme-:
Support efficient creation of parallel process,
implementation of multithreading or
multitasking, program partitioning and
replication and dynamic load balancing at run
time.

1)Dynamic Process Creation at Run Time.
2)Creation of lightweight processes.
3)Replication technique.
4)Partitioned Networks.
5)Automatic Load Balancing

10.2.3 Optimizing Compilers for
Parallelism

• Role of compiler to remove burden of
optimization and generation.

3 Phases-:
1)Flow analysis
2)Optimization
3)Code Generation

Flow Analysis

• Reveals design flow patters to determine data
and control dependencies.

• Flow analysis carried at various execution
levels.

1)Instruction level->VLSI or superscaler
processors.

2)Loop level->Simd and systolic computer
3)Task level->Multiprocessor/Multicomputer

Program Optimization

• Transformation of user program to explore
hardware capability.

• Explores better performance.
• Goal to maximize speed of code execution.
• To minimize code length.
• Local and global optimizations.
• Machine dependent Transformation

Parallel Code Generation

• Compiler directive can be used to generate
parallel code.

• 2 optimizing compilers-:
1)Parafrase and Parafrase 2
2)PFC and Parascope

Parafrase and Parafrase2

• Transforms sequential programs of fortran 77
into parallel programs.

• Parafrase consists of 100 program that are
encoded and passed.

• Pass list indentifies dependencies and
converts it to concurrent program.

• Parafrase2 for c and pascal in extension to
fortran.

PFC and ParaScope

• Translates fortran 77 to fortran 90 code.
• PFC package extended to PFC + for parallel

code generation on shared memory
multiprocessor.

• PFC performs analysis as following steps
below-:

1)Interprocedure Flow analysis using call graph
2)Transformation (do-loop normalization etc)
3)dependence analysis
4)Vector Code Generation

MODULE 5-ACA

Department of CSE, AJIET Page 1

MODULE 5

SOFTWARE FOR PARALLEL PROGRAMMING

Parallel programming models

There are six parallel programming models:

1) Shared-variable model

2) Message passing model

3) Data parallel model

4) Object oriented model

5) Functional and logic model

1. Shared-Variable Model

In all programming systems, we consider processors are active resources and memory

and I/O devices passive resources.The basic computational units in a parallel program

are processes corresponding to operations performed by related code segments.A

program is a collection of processesParallelism depends on how interprocess

communication (IPC) is implemented

 Fundamental issues in parallel programming are centered around the specification,

creation, suspension, reactivation, migration, termination, and synchronisation of

concurrent processes residing in the same or different processors

Shared-variable communication

 Multiprocessor programming is based on the use of shared variables in a common

memory for IPC.Shared-variable IPC demands the use of shared memory and mutual

e

x

c

l

u

s

i

o

n

 among multiple processes accessing the same set of variables .

MODULE 5-ACA

Department of CSE, AJIET Page 2

 The main issues in using this model include protected access of critical sections, memory

consistency, atomicity of memory operations, fast synchronization, shared data

structures, and fast data movement techniques

Critical Section

 A Critical Section (CS) is a code segment accessing shared variables, which must be

executed by only one process at a time and which, once started, must be completed

without interruption. In other words, a CS operation is indivisible and satisfies the

following requirements:

 Mutual exclusion- At most one process executing the C S at a time.

 No deadlock in waiting- No circular wait by two or more processes trying to enter the

CS; at least one will succeed

 Nonpreemption- No interrupt until completion, once entered the CS.

 Eventual entry- A process attempting to enter its CS will eventually succeed

Protected Access

 The main problem associated with the use of a CS is avoiding race conditions where

concurrent processes executing in different orders produce different results.

Four operational modes used in programming multiprocessor systems are:

 Multiprogramming

 Multiprocessing

 Multitasking

 Multithreading

MODULE 5-ACA

Department of CSE, AJIET Page 3

Partitioning and Replication

 The goal of parallel processing is to exploit parallelism as much as possible with the

lowest overhead

 Program partitioning is a technique for decomposing a large program and data set into

many small pieces for parallel execution by multiple processors

 Program replication refers to duplication of the same program code for parallel

execution on multiple processors over different data sets

 Partitioning is often practiced on a shared-memory multiprocessor system, while

replication is more suitable for distributed-memory message-passing multicomputers

Scheduling and Synchronization

 Scheduling of divided program modules on parallel processors is much more

complicated than scheduling of sequential programs on a uniprocessor

Static scheduling is conducted at post-compile time.

 Its advantage is low overhead but the shortcoming is a possible mismatch with the

runtime profile of each task and therefore potentially poor resource utilization

Dynamic scheduling catches the run-time conditions.

 However, dynamic scheduling requires fast context switching, preemption, and much

more OS support.

 The advantages of dynamic scheduling include better resource utilization at the expense

of higher scheduling overhead

Cache coherence and protection

 The multicache coherence problem demands an invalidation or update after each write

operation

 These coherence control operations require special bus or network protocols for

implementation

 A memory system is said to be coherent if the value returned on a read instruction is

always the value written by the latest write instruction on the same memory location

 Sequential consistency model demands that all memory accesses be strongly ordered on

a global basis

MODULE 5-ACA

Department of CSE, AJIET Page 4

 A processor cannot issue an access until the most recently shared writable memory

access has been globally perforinecl

 Weak consistency model enforces ordering and coherence at explicit synchronization

points only

2. Message Passing Model

 Two processes D and E residing at different processor nodes may communicate with

each other by passing messages through a direct or indirect network. The messages may

be instructions, data, synchronization, or interrupt signals, etc. The communication

delay caused by message passing is much longer than that caused by accessing shared

variables in a common memory

Synchronous Message Passing

 Since there is no shared memory, there is no need for mutual exclusion. Synchronous

message passing must synchronize the sender process and the receiver process in time and

space, just like a telephone call using circuit-switched lines.In general, no buffers are used in

the communication channels

 That is why synchronous communication can be blocked by channels being busy or in error

since only one message is allowed to be trasnmittted via a channel at a time

 In a synchronous paradigm, the passing of a message must synchronize the sending process

and the receiving process in time and space. Besides having a time connection, the sender

and receiver must also be linked by physical communication channels in space. A path of

channels must be ready to enable the message passing between them

 If one process is ready to communicate and the other is not, the one that is ready must be

blocked (or wait). In this sense, synchronous commnunication has been also called a

blocking communication scheme

Asynchronous Message Passing

 Asynchronous communication does not require that message sending and receiving be

synchronized in time and space. Buffers are often used in channels, which results in

nonblocking in message passing

 However, arbitrary communication delays may be experienced because the sender may

not know if and when the message has been received until acknowledgment is received

from the receiver. Nonblocking can be achieved by asynchronous message passing in

which two processes do not have to be synchronized either in time or in space.

 The sender is allowed to send a message without blocking, regardless of whether the

receiver is ready or not

MODULE 5-ACA

Department of CSE, AJIET Page 5

 Asynchronous communication requires the use of buffets to hold the messages along

the path of the connecting channels. Since channel buffers are finite, the sender will

eventually be blocked

3. Data-parallel model

With the lockstep operations in SIMD computers, the data-parallel code is easier to write and to

debug because parallelism is explicitly handled by hardware synchronization and flow

control.Data-parallel languages are modified directly from standard serial programming

languages. Data-parallel programs require the use of pre-distributed data sets. Thus the choice

of parallel data structures makes a big difference in data-parallel programming.Interconnected

data structures are also needed to facilitate data exchange operations

Data Parallelism

Ever since the introduction of the llliac IV computer, programming SIMD array processors has

been a challenge for computational scientists. The main difficulty in using the llliac IV had been

to match the problem size with the fixed machine size.

In other words, large arrays or matrices had to be partitioned into 64-element segments before

they could be effectively processed by the 64 processing elements (PEs) in the llliac IV machine

Synchronous SIMD programming differs from asynchronous MIMD programming in that all PEs

in an SIMD computer operate in a lockstep fashion, whereas all processors in an MIMD

computer execute different instructions asynchronously.In an SIMD program, scalar

instructions are directly executed by the control unit.

Vector instructions are broadcast to all processing elements. Vector operands are loaded into

the PEs from local memories simultaneously using a global address with different offsets in

local index registers.A masking pattern (binary vector) can be set under program control so that

PEs can be enabled or disabled dynamically in any instruction cycle.

4. Object-Oriented Model

In this model, objects are dynamically created and manipulated. Processing is performed by

sending and receiving messages among objects

Concurrent OOP

The popularity of OOP is attributed to three application demands:

 First, there is increased use of interacting processes by individual users, such as the use

of multiple windows.

 Second, workstation networks have become a cost-effective mechanism for resource

sharing and distributed problem solving.

MODULE 5-ACA

Department of CSE, AJIET Page 6

 Third, multiprocessor technology in several variants has advanced to the point of

providing supercomputing power at a fraction of the traditional cost

Program abstraction leads to program modularity and software reusability as is commonly

experienced with OOP

An Actor Model

 COOP must support patterns of reuse and classification, for example, through the use of

inheritance which allows all instances of a particular class to share the same

property.Actors are self-contained, interactive, independent components of a

computing system that communicate by asynchronous message passing.

 In an actor model, message passing is attached with semantics.

Basic actor primitives include:

 Create - Creating an actor from a behaviour description and a set of parameters

 Send to - Sending a message to another actor

 Become - An actor replacing its own behaviour by a new behaviour.

 State changes are specified by behaviour replacement

Parallelism in COOP

 Pipeline concurrency

 Divide and conquer

 Cooperative problem solving

MODULE 5-ACA

Department of CSE, AJIET Page 7

5. Functional and Logic Models

Two language-oriented programming models for parallel processing are:

 Functional programming model

 Logic programming model

 Functional programming model

A functional programming language emphasizes the functionality of a program and should not

produce side effects after execution.There is no concept of storage, assignment, and branching

in functional programs

In other words, the history of any computation performed prior to the evaluation of a

functional expression should be irrelevant to the meaning of the expression

PARALLEL LANGUAGES AND COMPILERS

The environment for parallel computers is much more demanding than that for sequential

computers. A programming environment is a collection of software tools and system software

support.

Users should not have to spend a lot of time programming hardware details; they should focus

instead on program parallelism using high-level abstractions

Language Features for Parallelism

Six categories according to the functionality

 Optimization features

 Availability Features

 Synchronization /Communication Features

MODULE 5-ACA

Department of CSE, AJIET Page 8

 Control of Parallelism

 Data parallelism Features

 Process management Features

Optimization features

These features are used for program restructuring and compilation directives in convening

sequentially coded programs into parallel forms.

 The purpose is to match the software parallelism with the hardware parallelism in the

target machine

 Automated parallelizer

 Semi-automated parallelizer

 Interactive restructure support

Availability Features

These are features that enhance the user-friendliness, make the language portable to a large

class of parallel computers, and expand the applicability of software libraries

 Scalability

 Compatibility

 Portability

Synchronization /Communication Features

 Single-assignment languages

 Shared variables (locks) for IPC

 Logically shared memory such as the tuple space in Linda

 Send/receive for message passing

 Rendezvous in Ada

 Remote procedure call

 Dataflow languages such as Id

 Barriers, mailbox, semaphores, monitors

Control of Parallelism

MODULE 5-ACA

Department of CSE, AJIET Page 9

Listed below are features involving control constructs for specifying parallelism in various

forms:

 Coarse, medium or fine grain

 Explicit versus implicit parallelism

 Global parallelism in the entire program

 Loop parallelism in iterations

 Task-split parallelism

 Shared task queue

 Divide-and-conquer paradigm

 Shared abstract data types

 Task dependency specification

Data parallelism Features

Data parallelism is used to specify how data are accessed and distributed in either SIMD or

MIMD computers.

 Run-time automatic decomposition

 Mapping specification

 Virtual processor support

 Direct access to shared data

 SPMD (single program multiple data) support

Process management Features

These features are needed to support the efficient creation of parallel processes,

implementation of multithreading or multitasking, program partitioning and replication, and

dynamic load balancing at run lime.

 Dynamic process creation at run time

 Lightweight processes (threads)

 Replicated workers

 Partitioned networks

 Automatic load balancing

MODULE 5-ACA

Department of CSE, AJIET Page 10

Parallel Language Constructs

Special language constructs and data array expressions are presented below for exploiting

parallelism in programs.

 Fortran 90 Array Notation

 A multidimensional data array is represented by an array name indexed by a sequence

of subscript triplets, one for each dimension. Triplets for different dimensions are

separated by commas

where each ei is an arithmetic expression that must produce a scalar integer value. The first

expression e1 is a lower bound, the second e2 an upper bound, and the third e3 an increment

stride.

For example, B(1: 4 : 3, 6 : 8 : 2,3) represents four elements B(l, 6, 3), B(4 ,6, 3), B(1, 8,3), and

B(4, 8, 3) of a three-dimensional array

 When the third expression in a triplet is missing, a unit stride is assumed

 The * notation in the second expression indicates all elements in that dimension

starting from e1, or the entire dimension if e1, is also omitted

When both e2 and e3 are omitted, the e1 alone represents a single element in that dimension.

 For example, A(5) represents the fifth element in the array A(3 : 7 : 2). This notation

allows us to select array sections or particular array elements.

 Array assignments are permitted under the following constraints:The array expression

on the right must have the same shape and the same number of elements as the array

on the left

 For example, the assignment A(2 : 4, 5 : 8) =A(3 : 5, 1 : 4) is valid, but the assignment 4(1

: 4, 1 : 3) =A(1:2, 1 : 6) is not valid, even tempt each side has 12 elements.

 When a scalar is assigned to an array, the value of the scalar is assigned to every

element of the array.

 For instance, the statement B(3 : 4, 5) = 0 sets B(3, 5) and B(4, 5) to 0.

MODULE 5-ACA

Department of CSE, AJIET Page 11

Parallel Flow Control

The conventional Fortran Do loop declares that all scalar instructions within the (Do, Enddo)

pair are executed sequentially, and so are the successive iterations

 To declare parallel activities, we use the (Doall, Endall) pair. All iterations in the Doall

loop are totally independent of each other. This implies that they can be executed in

parallel if there are sufficient processors to handle different iterations.However, the

computations within each iteration are still executed serially in program order.

 When the successive iterations of a loop depend on each other, we use the (Doacross,

Endacross) pair to declare parallelism with loop-carried dependences.Synchronizations

must be performed between the iterations that depend on each other.For example,

dependence along the J-dimension exists in the following program. We use Doacross to

declare parallelism along the I-dimension, but synchronization between iterations is

required

 Another program construct is the (Cobegin, Coend) pair. All computations specified

within the block could be executed in parallel.

The command Parbegin and Parend have the same meaning .

 Fork and join:

 During the execution of a process P, we can use a Fork Q command to spawn a new

process Q:

MODULE 5-ACA

Department of CSE, AJIET Page 12

 The Join Q command recombines the two processes into one process. Execution of Q is

initialized when the Fork Q statement in P is executed. Programs P and Q are executed

concurrently until either P executes the Join Q statement or Q terminates. Whichever

one finishes first must wait for the other to complete execution, before they can he

rejoined

Optimizing Compilers for Parallelism

Because high-level languages are used almost exclusively to write programs today, compilers

have become a necessity in modem computers.The role of a compiler is to remove the burden

of program optimization and code generation from the programmer.

A parallelizing compiler consists of the following three major phases:

 Flow analysis, optimizations, and code generation

 Flow Analysis: This phase reveals the program flow patterns in order to determine data

and control dependences in the source codeGenerally speaking, instruction-level

parallelism is exploited in superscalar or VLSI processors; loop level in SIMD, vector, or

MODULE 5-ACA

Department of CSE, AJIET Page 13

systolic computers; and task level in multiprocessors. multicomputers, or a network of

workstations

 Program Optimizations:This refers to the transformation of user programs in order to

explore the hardware capabilities as much as possible. Transformation can be

conducted at the loop level, locality level, or prefetching level with the ultimate goal of

reaching global optimization. The optimization often transforms a code into an

Equivalent but “better” form in the same representation language. These

transformations should be machine-independent.

The ultimate goal of program optimization is to maximize the speed of code execution. This

involves the minimization of code length and of memory accesses and the exploitation of

parallelism in programs. The optimization techniques include vectorization using pipelined

hardware and parallelization using multiple processors simultaneously.

Parallel code generation

Code generation usually involves transformation from one representation to another, called an

intermediate form

Two optimizing compilers are:

 Parafrase and parafrase2

Is a source-to-source program restructurer (or compiler preprocessor) which transforms

sequential Fortran 77 programs into forms suitable for vectorization or parallelization

 The PFC and Parascope

Automatic source-to-source vectorizer. It translated Fortran 97 code into Fortran 90code.

DEPENDENCE ANALYSIS OF DATA ARRAYS

Dependence testing of successive iterations in multidimensional data arrays

 Iteration Space and Dependence analysis

 Flow dependence, antidependence, and output dependence were defined for scalar

data

 They can be summarized by the existence of dynamic references of R1 and R2, if and

only if either R1, or R2 is a write operation, R1 executes before R2, or R1 and R2 both

write the same variable

 When the referenced object is a data array indexed by a multidimensional subscript, the

dependence becomes very difficult to determine at compile time

MODULE 5-ACA

Department of CSE, AJIET Page 14

 Precise and efficient dependence tests are essential to the effectiveness of a

parallelizing compiler. The process of computing all the data dependences in a program

is called dependence analysis

 Dependence Testing

 Calculating data dependence for analysis complicated by the fact that two array

references may not access the same memory location.

 Dependence testing is the method used to determine whether dependences exist

between two subscripted references to the same array in a loop nest

Iteration space

 The n-dimensional discrete Cartesian space for n-deep loops is called an iteration space.

 The iteration is represented as coordinates in the iteration space.

 The following example clarifies the concept of lexicographic order for the successive iterations in

a loop nest

MODULE 5-ACA

Department of CSE, AJIET Page 15

 The lexicographic order is important to performing matrix transformation, which can be applied

for loop optimization

CODE OPTIMIZATION AND SCHEDULING

Describe the roles of compilers in code optimization and code generation for parallel computers

Scalar Optimization with Basic Blocks

 Instruction scheduling is often supported by both compiler techniques and dynamic scheduling

hardware. In order to exploit instruction-level parallelism (ILP), we need to optimize the code

generation and scheduling process under both machine and program constraints

 Machine constraints are caused by mutually exclusive use of functional units, registers, data

paths, and memory. Program constraints are caused by data and control dependences

Static instruction scheduling

 Provide an additional set of nontrapping instructions

 This approach requires an extension of the instruction set of existing processors

Dynamic instruction scheduling

 To support out-of-order execution

 This approach usually does not require the instruction set to be modified but requires complex

hardware support

In general, instruction scheduling methods ensure that control dependences, data dependences, and

resource limitations are properly handled during concurrent execution.

 The goal is to produce a schedule that minimizes the execution time or the memory demand, in

addition to enforcing correctness of execution.

 Static scheduling at compile time requires intelligent compilation support, whereas dynamic

scheduling at run time requires sophisticated hardware support

Precedence Constraints

MODULE 5-ACA

Department of CSE, AJIET Page 16

 If a flow dependence is detected, the write must proceed ahead of the read operation involved.

Similarly, output dependence produces different results if two writes to the same location are

executed in a different order. Antidependence enforces a read to be ahead of the write

operation involved.

 We need to analyze the memory variables.

 Scalar data dependence is much easier to detect. Dependence among arrays of data elements is

much more involved

Basic Block Scheduling

 A basic block (block) is a sequence ofstatements satisfying two properties:No statement but the

first can be reached from outside the block; i.e. there are no branches into the middle of the

block.

 All statements are executed consecutively if the first one is. Therefore, no branches out or halts

are allowed until the end of the block. All blocks are required to be maximal in the sense that

they cannot be extended up or down without violating these properties

 An extended basic block is defined as a sequence of statements in which the first statement is

the only entry point. Thus an extended block may have branches out in the middle of the code

but no branches into it

The basic steps for constructing basic blocks:

 Find the leaders, which are the first statements in a block. Leaders are identified as being one or

more of the following:

 The first statement of the code.

 The target of a conditional or unconditional branch.

 A statement following a conditional branch.

 For a leader, a basic block consists of the leader and all statements following up to but excluding

the next leadcr.

MODULE 5-ACA

Department of CSE, AJIET Page 17

If a three-address machine is assumed, the above code is translated into the following assembly

language code.

 Variable names an the right of := stand for values, and on the left for addresses.

MODULE 5-ACA

Department of CSE, AJIET Page 18

The above 31 statements are divided into 8 basic blocks

Local and Global Optimizations

 These are code optimizations performed only within basic blocks. The information

needed for optimization is gathered entirely from a single basic block, not from an

extended basic block. No control—flow information between blocks is considered.

MODULE 5-ACA

Department of CSE, AJIET Page 19

Listed below are some local optimizations often performed:

 Local common subexpression elimination

If a subexpression is to be evaluated more than once within a single block, it can be replaced by

a single evaluationin block B7, t9 and tl5 each compute 4 *(j-1), and t12 and t18 each compute

4 *j. Replacing t15 by t9, and t18 by t12, we obtain the following revised code for B7, which is

shorter to execute.

 Local Constant Folding or Propogation

Sometimes some constants used in instructions can be computed at compile time. This

often takes place in the initialization blocks. The compile-time generated constants are then

folded to eliminate unnecessary calculations at run time, in other cases, a local copy may be

propagated to eliminate unnecessary calculations

 Algebraic Optimization to Simplify Expressions

For example, one can replace the identity statement A := B + 0 or A := B * 1 by A := B and

later even replace references to this A by references to B. Or one can use the commutative

law to combine expressions C := A + B and D := B + A. The associative and distributive law

can also be applied on equal-priority operators, such as replacing (a-b) - c by a -(b-c) if (b-c)

has already been evaluated earlier.

 Instruction reordering

Code reordering is often practiced to maximize the pipeline utilization or to enable overlapped

memory accesses. Some orders yield better code than others. Reordered instructions lead to

better scheduling, preventing pipeline or memory delays .

MODULE 5-ACA

Department of CSE, AJIET Page 20

Global Optimizations

These are code optimizations performed across basic block boundaries.

 Global versions of local optimizations

These include global common subexpression elimination, global constant propagation, dead

code elimination, etc. The following example further optimizes the code in Example if some

global optimizations are performed

MODULE 5-ACA

Department of CSE, AJIET Page 21

 The revised program, after both local and global optimizations, is obtained as follows:

Loop Optimizations

These include various loop transformations for the purpose of vectorization, parallelization, or

both. Sometimes code motion and induction variable elimination can simplify loop structures.

 For example, one can replace the calculation of an induction variable involving a

multiplication by an addition to its former value.

 The addition takes less time to perform and thus results in a shorter execution time.

In other cases, loop-invariant variables or codes can be moved out of the loop to simplify the

loop nest.

 One can also lower the loop control overhead using loop unrolling to reduce iteration or

loop fusion to merge loops

Control-flow Optimization

MODULE 5-ACA

Department of CSE, AJIET Page 22

These are other global optimizations dealing with control structure but not directly with loops.

 A good example is code hoisting, which eliminates copies of identical code on parallel

paths in a flow graph. This can save space significantly, but would have no impact on

execution time

Machine-Dependent Optimizations

With a finite number of registers, memory cells, and functional units in a machine, the efficient

allocation of machine resources affects both space and time optimization of programs. Strength

reduction replaces complex operations by cheaper operations, such as replacing 2a by a + a, a2

by a * a and length(S1+S2) by length (S1) + length(S2)

Vectorization and Parallelization Methods

Besides scalar optimizations, we need to perform vector and for parallel optimizations. The

purpose is to improve the performance of programs that manipulate large data arrays or can be

partitioned for parallel execution.

 Vectorization is the process of converting scalar looping operations into equivalent

vector instruction execution.

 Parallelition aims at converting sequential code into parallel form, which can enable

parallel execution by multiple processors

An optimizing compiler that does vectorization automatically or semi-automalically with

directives from programmers is-called a vectorizing compiler or simply a vectorizer. Similarly, a

parallelizing compiler should be designed to generate parallel code from sequential code

automatically or semi-automatically.

Vectorization methods

 We use Fortran 90 notation; for example, successive iterations in the following loop are

totally independent:

 This scalar loop can be convened into one vector-add instruction defined by the

following array assignment:

MODULE 5-ACA

Department of CSE, AJIET Page 23

Use of temporary storage

In order to enable pipelined execution by vector hardware, we need to introduce a temporary

array TEMP(1:N) to produce the following vector code:

Loop interchanging

Vectorization is often performed in the inner loop rather than in the outer loop.

 Sometimes we interchange the loops to enable the vectorization

 The general rules for loop interchanges are to make the most profitable vectorizable

loop the innermost loop, to make the most profitable parallelizable loop the outermost

loop, to enable memory accesses to consecutive elements in arrays

MODULE 5-ACA

Department of CSE, AJIET Page 24

 The statement s1 is both flow dependent and anti-dependent on itself. The inner loop

cannot be vectorized in j-dimension

 Now the inner loop can be vectorized in i-dimension

Loop Distribution

 Nested loops can be vectorized by distributing the outermost loop and vectorizing each

of the resulting loops or loop nests.

 The I-loop is distributed to three copies, separated by the nested J-loop from the

assignment to array B and D, and vectorized as follows:

MODULE 5-ACA

Department of CSE, AJIET Page 25

Vector Reduction

 In general, a vector reduction produces a scalar value from one or two data arrays.

Examples include the sum, product, maximum, and minimum of all the elements in a single

array. A dot product produces a scalar S from two array

 Each statement can be recognized as reduction operation and can be vectorized as:

Node Splitting

 The data dependence cycle can sometimes be broken by node splitting. Consider the

following loop:

Vectorization Inhibitors

Listed below are some conditions inhibiting or preventing vectorization:

Computed conditional statements such as IF statements which depend on runtime conditions.

 Multiple loop entries or exits (not basic blocks).

MODULE 5-ACA

Department of CSE, AJIET Page 26

 Function or subroutine calls.

 Input/output statements

 Recurrences and their variations

 A recurrence exists when a value calculated in one iteration of a loop might be

referenced in another iteration

Code Parallelization

Parallel code optimization spreads a single program into many threads for parallel execution by

multiple processors.

 The purpose is to reduce the total execution time.

 Each thread is a sequence of instructions that must execute on a single processor

Each of the N -1 iterations in the outer loop can be scheduled for a single processor to execute

 Each newly created thread consists of one entire J-loop with a constant index value for I.

 If dependence does exist between the iterations, the Doacross construct can be used

with proper synchronization among the iterations

Five execution modes of a FX/Fortran loop on the Alliant FX/80 multiprocessor

 Scalar

 Vector

 Scalar-concurrent

 Vector concurrent

 Concurrent outer/vector iner(COVI) modes

MODULE 5-ACA

Department of CSE, AJIET Page 27

MODULE 5-ACA

Department of CSE, AJIET Page 28

Inhibitors of Parallelization

 Multiple entries or exits.

 Function or subroutine calls.

 Input/output statements.

 Nondeterminism of parallel execution.

 Loop-carried dependences.

Code Generation and Scheduling

MODULE 5-ACA

Department of CSE, AJIET Page 29

 Issues involved in code generation include order of execution, instruction selection,

register allocation, branch handling, post-optimizations, etc.

Directed Acyclic Graph

Because instructions within each basic block are sequenced without any backtracks,

computations performed can thus be represented by a directed acyclic graph (DAG).A DAG can

he built in one pass through a basic block. The nodes in a DAG represent values. Each interior

node is labelled by the operator that produces its value. Edges on the DAG show the data

dependence constraints.

 The children of a node are the nodes producing the operand values.

 The leaf nodes carry the initial values or constants existing on entry to a basic block

DAG construction repeats the following steps from node to node.

 Consider the statement A := B + C in a basic block

 We first find nodes representing the values of B and C. If B and C are not computed in

the block, they must be retrieved from leaf nodes. Otherwise, B and C should come from

interior nodes of the DAG. Then we create a node labelled “+”. Children of this node are

the nodes for values of B and C

If there is already an identical node [same label and same child nodes], node creation can be

skipped. The node for “+“ becomes the current node for A

Construction of a DAG for the inner loop kernel of the bubble sort program

MODULE 5-ACA

Department of CSE, AJIET Page 30

List Scheduling

A DAG represents the flow of instructions in a basic block. A topological sort can be used to

schedule the operations. Let READY be a buffer holding all nodes which are ready to execute.

 Initially, the READY buffer holds all leaf nodes with Zero predecessors.

 Schedule each node in READY as early as possible, until it becomes empty.

 After all the predecessor (children) nodes are scheduled, the successor (parent) node

should be immediately inserted into the READY buffer.

With list scheduling, each interior node is scheduled after its children.

 Additional ordering constraints are needed for a procedure call or assignment through a

pointer.

 When the root nodes are reached, the schedule is produced

Cycle Scheduling

MODULE 5-ACA

Department of CSE, AJIET Page 31

 List scheduling is operation-based, which has the advantage that the highest-priority

operation is scheduled first. Another scheduling method for instructions in basic blocks

is based on a cycle scheduling concept in which "cycles" rather “operations” are

scheduled in order.

 Let READY be a buffer holding nodes with zero unscheduled predecessors ready to

execute in a current cycle. Let LEADER be a buffer holding nodes with zero unscheduled

predecessors but not ready in a current cycle

LOOP PARALLELIZATION AND PIPELINING

This section describes the theory and application of loop transformations for vectorization or

parallelization purposes

Loop Transformation Theory

 Parallelizing loop nests is one of the most fundamental program optimization

techniques demanded in a vectorizing and parallelizing compiler.The goal is to maximize

the degree of parallelism or data locality in the loop nest

Elementary Transformations

 A loop transformation rearranges the execution order of the iterations in a loop nest.

Three elementary loop transformations are introduced below.

SYNCHRONIZATION AND MULTIPROCESSING MODES

Principles of Synchronization

 The performance and correctness of a parallel program execution rely heavily on

efficient synchronization among concurrent computations in multiple processors.The

source of the synchronization problem is the sharing of writable objects (data or

structures) among processes.

 Once a writable object permanently becomes read-only, the synchronization problem

vanishes at that point.Synchronization consists of implementing the order of operations

in an algorithm by observing the dependences for writable data

MODULE 5-ACA

Department of CSE, AJIET Page 32

 Atomic operations

 Wait protocols

 Fairness policies

 Access order

 Sole-access protocols

Atomic Operations

 Two classes of shared memory access operations arean individual write or read such as

Registerl := x and an indivisible read-modify-write such as x:=f(x) or y =f(x)

 From the synchronization point of view, the order of program operations is described by

read-modify-write operations over shared writable objects called atoms. An operation

on an atom is called an atomic operation

 Hard atom is one whose access races are resolved by hardware such as Test&Set,

whereas a soft atom is one whose access races are resolved by software such as a

shared data structure protected by a Test&Set bit

The execution of operations may be out of program order as long as the execution order

preserves the meaning of the code.

 Three kinds of program dependencies are identified below:

Wait protocols

 Busy wait

 The process remains loaded in the processor's context registers and is allowed to

continually retry

 While it does consume processor cycles, the reason for using busy wait is that it offers a

faster response when the shared object becomes available

Sleep wait

 The process is removed from the processor and put in a wait queue.

 The process being suspended must be notified of the event it is waiting for.

MODULE 5-ACA

Department of CSE, AJIET Page 33

Fairness policies

 Busy wait may reduce synchronization delay when the shared object becomes available.

 However, it wastes processor cycles by continually checking the object state and also

may cause hot spots in memory access.

 In sleep wait, the resources are better utilized, but a longer synchronization delay may

result.

For all suspended processes waiting in a queue, a fairness policies must be used to revive one of

the waiting processes

Sole- access protocols

Three synchronization methods are described below based on who updates the atom and

whether sole access is granted before or after the atomic operations:

 Lock Synchronization :In this method, the atom is updated by the requester process and

sole access is granted before the atomic operation. For this reason, it is also called pre-

synchronization

 Optimistic Synchronization :This method also updates the atom by the requester

process. But sole access is granted after the atomic operation, as described below. It is

also called post-synchronization. A process may secure sole access after first completing

an atomic operation on a local version of the atom and then executing another atomic

operation on the global version of the atom.

 Server synchronization:This method updates the atom by the server process of the

requesting process, as suggested by the name. Compared with lock synchronization and

optimistic synchronization, server synchronization offers full service.An atom has a

unique update server. A process requesting an atomic operation on the atom sends the

request to the atom‘s update server. The update server may be a specialized server

processor (SP) associated with the atom‘s memory module.

MODULE 5-ACA

Department of CSE, AJIET Page 34

Multiprocessor execution modes

Multiprocessor supercomputers are built for vector processing as well as for parallel processing

across multiple processors

 Multiprocessing Requirement: Multiprocessing at the process level requires the use of

shared memory in a tightly coupled system.

Summarized below are special requirements for facilitating efficient multiprocessing:

Multitasking Environment:

Multitasking exploits parallelism at several levels:

Multitasking on Cray Multiprocessor

 Macrotasking -When multitasking is conducted at the level of subroutine calls

MODULE 5-ACA

Department of CSE, AJIET Page 35

Microtasking

 This corresponds to multitasking at the loop control level with finer granularity

Autotasking

 The autotasking feature automatically divides a program into discrete tasks for parallel

execution on a multiprocessor.

MODULE 5-ACA

Department of CSE, AJIET Page 36

 In the past, macrotasking was achieved by direct programmer intervention.

 Microtasking was aided by an interactive compiler.

COMPILER-DETECTED INSTRUCTION LEVEL PARALLELISM

In the process of translating a sequential source program into machine language, the compiler

performs extensive syntactic and semantic analysis of the source program. The compiler can

uncover the instruction level parallelism which is implicit in the program.

 Loop unrolling

One relatively simple technique which the compiler can employ is know as loop unrolling, by

which independent instructions from multiple successive iterations of a loop can be made to

execute in parallel

 Unrolling means that the body of the loop is repeated n times for n successive values of the

control variable so that one iteration of the transformed loop performs the work of n iterations

of the original loop.

In the unrolled program fragment, the loop contains four independent instances of the original

loop body—indeed this is the meaning of loop unrolling

 If the processor has sufficient floating point arithmetic resources—instructions from the

four loop iterations can he in progress in parallel on the various functional units.It is

clear that code length of the machine language program increases as a result of loop

unrolling; this increase may have an effect on the cache hit ratio.

MODULE 5-ACA

Department of CSE, AJIET Page 37

 Also, more registers are needed to exploit the instruction level parallelism within the

longer unrolled loop. To discover and exploit the parallelism implicit in loops, the

compiler must perform the loop unrolling transformation to generate the machine

codeClearly, this strategy makes sense only if sufficient hardware resources are

provided within the processor for executing instructions in parallel

 In the example above, the loop control variable in the original program goes from 0 to

58—i.e. Its initial and final values are both known at compile time. If, on the other hand,

the loop control values are not known at compile time, the compiler must generate

code to calculate at run-time the control values for the unrolled loop.

 When the compiler schedules machine instructions for execution on the processor, the

form of scheduling is known as static scheduling. Instruction scheduling carried out by

the processor hardware on the fly is known as dynamic scheduling.If the compiler is to

schedule machine instructions, then it must perform the required dependence analysis

amongst instructions

 Dependences amongst references to simple variables, or amongst array elements whose

index values are known at compile time, can be analyzed relatively easily at compile

time.But when pointers are used to refer to locations in memory, or when array index

values are known only at run-time, then clearly dependence analysis is not possible at

compile time. Therefore processor hardware must provide support at run-time for alias

analysis—i.e. based on the respective effective addresses, to determine whether two

memory accesses for read or write operations refer to the same location.

 Another reason why static scheduling by the compiler must be backed up by dynamic

scheduling by the processor hardware : Cache misses, I/O interrupts, hardware

exceptions cannot be predicted at compile time

Operand forwarding

We now know that pipeline flushes caused by conditional branch, indirect jump, and procedure

return instructions lead to degradation in performance, and therefore attempts must be made

to minimize them;

Similarly pipeline stalls caused by data dependences and cache misses also have adverse impact

on processor performance.Therefore the strategy should be to minimize the number of pipeline

stalls and flushes encountered while executing an instruction stream. In other words, we must

minimize wasted processor clock cycles within the pipeline and also, if possible, within the

various functional units of the processor.

Operand forwarding helps in reducing the impact of true data dependences in the instruction

stream.

Consider the following simple sequence of two instructions in a running program:

MODULE 5-ACA

Department of CSE, AJIET Page 38

 There is a RAW dependence between 2 instructions-the output of the first is used as

input to the second. In a pipelined processor, ideally the second instruction should be

executed one stage and therefore one clock cycle behind the first. However, the

difficulty here is that it takes one clock cycle to transfer ALU output to destination

register R3, and then another clock cycle to transfer the contents of register R3 to ALU

input for the right shift

 Thus a total of two clock cycles are needed to bring the result of the first instruction

where it is needed for the second instruction. Therefore, as things stand, the second

instruction above cannot be executed just one clock cycle behind the first.

But note that the required two transfers of data can be achieved in only one clock cycle if ALU

output is sent to both R3 and ALU input in the same clock cycle. In general, if X is to be copied

to Y, and in the next clock cycle Y is to be copied to Z, then we can just as well copy X to both Y

and Z in one clock cycle.

The above reasoning applies even if there is an intervening instruction between ADD and

SHIFTR.

 Consider the following sequence of instructions:

MODULE 5-ACA

Department of CSE, AJIET Page 39

 SHIFTER must be executed after ADD, in view of the RAW dependence.

 But there is no such dependence between SUB and any of the other two instructions,

which means that SUB can be executed in program order or before ADD, or after

SHIFTR.If SUB is executed in program order, then even without operand forwarding

between ADD and SHIIFTR, no processor clock cycle is lost, since SHIFTER does not

directly follow ADD. But now suppose SUB is executed either before ADD, or after

SHIFTR. In both these cases, SHIFTR directly follows ADD, and therefore operand

forwarding proves useful in saving a processor cycle, as we have seen above.

Register renaming

 Traditional compilers allocate registers to program variables in such a way as to reduce

the main memory accesses required in the running program.Traditional compilers and

assembly language programmers work with a fairly small number of programmable

registers.Amongst the instructions in various stages of execution within the processor,

there would be occurrences of RAW, WAR and WAW dependences on programmable

registers

 RAW is true data dependence—since a value written by one instruction is used as an

input operand by another. But a WAR or WAW dependence can be avoided if we have

more registers to work with. We can simply remove such a dependence by getting the

two instructions in question to use two different registers

Both these instructions are writing to register R5, creating thereby a WAW dependence, i.e

output dependence. Clearly, any subsequent instruction should read the value written into R5

by FSUB, and not the value written by FADD.

With additional registers available for use as these instructions execute, we have a simple

technique to remove this output dependence. Let FSUB write its output value to a register

other than R5, and let us call that other register X.

MODULE 5-ACA

Department of CSE, AJIET Page 40

Then the instructions which use the value generated by FSUB will refer to X, while the

instructions which use the value generated by FADD will continue to refer to R5. Now since

FADD and FSUB are writing to two different registers, the output dependence or WAW

between them has been removed

When FSUB commits, then the value in R5 should be updated by the value in X i.e. the value

computed by FSUB. Then the physical register X, which is not a program visible register, can be

freed up for use in another such situation.

 Register renaming and WAR dependence

 With register renaming, it is a simple matter to resolve the WAR anti-dependence

between the second FADD and FSUB.Let Xm be the program invisible register to which

R2 has been mapped when the first FADD executes.

 This is then the remapped register to which the second FADD refers for its first data

operand.Let FSUB write its output to a program invisible register other than Xm which

we denote by Xn.Instructions which use the value written by FSUB refer to Xn while

instructions which use the value written by the first FADD refer to Xm.

 When the first FADD commits, the value in Xm is transferred to R2 and program invisible

register Xm is freed up; likewise, later when FSUB commits, the value in Xn is

transferred to R2 and program invisible register Xn is freed up.

 Dependences are also caused by reads and writes to memory locations.

 In general, however, whether two instructions refer to the same memory location can

only be known after the two effective addresses are calculated during execution.

MODULE 5-ACA

Department of CSE, AJIET Page 41

 For example, the two memory references 2000[R1] and 4000[R3] occurring in a running

program may or may not refer to the same memory location—this cannot be resolved at

compile time.Resolution of whether two memory references point to the same memory

location is known as alias analysis, which must be carried out on the basis of the two

effective memory addresses. If a load and a store operation to memory refers to two

different addresses, their order may be interchanged

Reorder buffer

 Since instructions execute in parallel on multiple functional units, the reorder buffer

serves the function of bringing completed instructions back into an order which is

consistent with program order. Note that instructions may execute in an order which is

not related to program order, but must be committed in program order

 At any time, program state and processor state are defined in terms of instructions

which have been committed i.e. their results are reflected in appropriate registers

and/or memory locations. The concepts of program state and processor state are

important in supporting context switches and in providing precise exceptions

 Entries in the reorder buffer are completed instructions, which are queued in program

order. However, since instructions do not necessarily complete in program order, we

also need a flag with each reorder buffer entry to indicate whether the instruction in

that position has completed

 If the instruction at the head of the queue has not completed, and the reorder butter is

full, then further issue of instructions is held up—i.e. the pipeline stalls—because there

is no free space in the reorder buffer for one more entry.

MODULE 5-ACA

Department of CSE, AJIET Page 42

Tomasulo’s algorithm

The algorithm was based on operand forwarding over a common data bus, with tags to identity

sources of data values sent over the bus. Register renaming was also an part of the algorithm.

For register renaming, we need a set of program invisible registers to which programmable

registers are mapped.Tomasulo’s algorithm requires these program invisible registers to be

provided with reservation stations of functional units.

 Let us assume that the functional units are internally pipelined and can complete one

operation in every clock cycle.

 Therefore each functional unit can initiate one operation in every clock cycle—provided

of course that a reservation station of the unit is ready with the required input operand

value or values

 When the needed operand value or values are available in a reservation station, the

functional unit can initiate the required operation in the next clock cycle. At the time of

instruction issue, the reservation station is filled out with the operation code {op}.

MODULE 5-ACA

Department of CSE, AJIET Page 43

 If an operand value is available, for example in a programmable register, it is transferred

to the corresponding source operand field in the reservation station

 However, if the operand value is not available at the time of issue, the corresponding

source tag (t1 and/or t2) is copied into the reservation station. The source tag identifies

the source of the required operand. As soon as the required operand value is available

at its source—which would be typically the output of a functional unit—the data value is

forwarded over the common data bus, along with the source tag.

 This value is copied into all the reservation station operand slots which have the

matching tag.

Tomasulo’s algorithm and RAW dependence

 Assume that instruction I1 is to write its result into R4, and that two subsequent

instructions I2 and I3 are to read—i.e. make use of—that result value.

 Thus instructions I2 and I3 are truly data dependent (RAW dependent) on instruction I1

Assume that the value in R4 is not available when I2 and I3 are issued; the reason could be, for

example, that one of the operands needed for I1 is itself not available

 When I2 and I3 are issued, they are parked in the reservation stations of the appropriate

functional units

 Since the required result value from I1 is not available, these reservation station entries

of I2 and I3 get source tag corresponding to the output of I1 —i.e. output of the

functional unit which is performing the operation of I1.

 When the result of I1 becomes available at its functional unit, it is sent over the

common data bus along with the tag value of its source—i.e. output of functional unit.

Combination of RAW and WAR dependence

MODULE 5-ACA

Department of CSE, AJIET Page 44

 The question new is: Can I3 be issued even before I1 completes and I2 starts execution?

BRANCH PREDICTION

About 15% to 20% of instructions in a typical program are branch and jump instructions,

including procedure returns. Therefore—if hardware resources are to be fully utilized in a

superscalar processor—the processor must start working on instructions beyond a branch, even

before the branch instruction itself has completed. This is only possible through some form of

branch prediction

Two-bit predictor

 A two-bit counter is maintained for every conditional branch instruction in the program.

 The two-bit counter has four possible states; these four states and the possible

transitions between these states are shown below

MODULE 5-ACA

Department of CSE, AJIET Page 45

 To be effective, branch prediction should be carried out as early as possible in the

instruction pipeline.As soon as a conditional branch instruction is decoded, branch

prediction logic should predict whether the branch is taken.

 Accordingly, the next instruction address should be taken either as the branch target

address (i.e. branch is taken), or the sequentially next address in the program (i.e.

branch is not taken).

 Can branch prediction be carried out even before the instruction is decoded i.e. at the

instruction fetch stage? Yes, if a so-called branch-target-buffer is provided which has a

history of recently executed conditional branches.In some programs, whether a

conditional branch is taken or not taken correlates better with other conditional

branches in the program—rather than with the earlier history of outcomes of the same

conditional branch.

 Accordingly, correlated predictors can be designed, which generate a branch prediction

based on whether other conditional branches in the program were taken or not taken.

Branch prediction based on the earlier history of the same branch is known as local prediction,

while prediction based on the history of other branches in the program is known as global

prediction

 A tournament predictor uses

 A global predictor

 A local predictor

 A selector which selects one of the two predictors for prediction at a given branch

instruction

Speculative Execution

Instructions executed on the basis of a predicted branch, before the actual branch result is

known, are said to involve speculative execution.

 If a branch prediction turns out to be correct, the corresponding speculatively executed

instructions must be committed.

 If the prediction turns out to be wrong, the effects of corresponding speculative

operations carried out within the processor must be cleaned up, and instructions from

another branch of the program must instead be executed

