
WEB TECHNOLOGY AND ITS
APPLICATIONS

MODULE 4 - SYLLABUS

• PHP Arrays and Superglobals, Arrays, $_GET and
$_POST Superglobal Arrays,$_SERVER Array, $_Files
Array, Reading/Writing Files, PHP Classes andObjects,
Object-Oriented Overview, Classes and Objects in
PHP, Object Oriented Design, Error Handling and
Validation, What are Errors and Exceptions?, PHP
Error Reporting, PHP Error and Exception Handling

PHP Arrays and Superglobals

Chapter 9

Section 1 of 5

ARRAYS

Arrays

An array is a data structure that

• Collects a number of related elements together in a single
variable.

• Allows the set to be Iterated

• Allows access of any element

Since PHP implements an array as a dynamic structure:

• Add to the array

• Remove from the array

Background

Arrays

In PHP an array is actually an ordered map, which associates
each value in the array with a key.

KeyValue

Arrays

Array keys are the means by which you reer to single element in
the array.

In most programming languages array keys are limited to
integers, start at 0, and go up by 1.

In PHP, array keys must be either integers or strings and need not
be sequential.

• Don’t mix key types i.e. “1” vs 1

• If you don’t explicitly define them they are 0,1,…

Keys

Arrays

Array values, unlike keys, are not restricted to integers and
strings.

They can be any object, type, or primitive supported in PHP.

You can even have objects of your own types, so long as the
keys in the array are integers and strings.

Values

Arrays

The following declares an empty array named days:

$days = array();

You can also initialize it with a comma-delimited list of values
inside the () braces using either of two following syntaxes:

$days = array("Mon","Tue","Wed","Thu","Fri");

$days = ["Mon","Tue","Wed","Thu","Fri"]; // alternate

Defining an array

Arrays

You can also declare each subsequent element in the array
individually:

$days = array();

$days[0] = "Mon"; //set 0th key’s value to “Mon”

$days[1] = "Tue";

// also alternate approach

$daysB = array();

$daysB[] = "Mon"; //set the next sequential value to “Mon”

$daysB[] = "Tue";

Defining an array

Arrays

To access values in an array you refer to their key using the
square bracket notation.

echo "Value at index 1 is ". $days[1];

Access values

Keys and Values

In PHP, you are also able to explicitly define the keys in addition to
the values.

This allows you to use keys other than the classic 0, 1, 2, . . . , n to
define the indexes of an array.

Super Explicit
Array declaration with string keys, integer values

Multidimensional Arrays

$month = array(

array("Mon","Tue","Wed","Thu","Fri"),

array("Mon","Tue","Wed","Thu","Fri"),

array("Mon","Tue","Wed","Thu","Fri"),

array("Mon","Tue","Wed","Thu","Fri")

);

echo $month[0][3]; // outputs Thu

Creation

Multidimensional Arrays
Access

Multidimensional Arrays

$cart = array();

$cart[] = array("id" => 37, "title" => "Burial at Ornans", "quantity" => 1);

$cart[] = array("id" => 345, "title" => "The Death of Marat", "quantity" => 1);

$cart[] = array("id" => 63, "title" => "Starry Night", "quantity" => 1);

Another example

Iterating through an array

Iterating through an array
Foreach loop is pretty nice

The challenge of using the classic loop structures is that when
you have nonsequential integer keys (i.e., an associative array),
you can’t write a simple loop that uses the $i++ construct. To
address the dynamic nature of such arrays, you have to use
iterators to move through such an array.

Adding to an array
To an array

An element can be added to an array simply by using a key/index
that hasn’t been used

$days[5] = "Sat";

A new element can be added to the end of any array

$days[] = "Sun";

Adding to an array
And quickly printing

PHP is more than happy to let you “skip” an index

$days = array("Mon","Tue","Wed","Thu","Fri");

$days[7] = "Sat";

print_r($days);

Array ([0] => Mon [1] => Tue [2] => Wed [3] => Thu [4] => Fri [7] => Sat)’

If we try referencing $days[6], it will return a NULL value

Deleting from an array

You can explicitly delete array elements using the unset() function

Deleting from an array

You can explicitly delete array elements using the unset() function.

array_values() reindexes the array numerically

Checking for a value

Since array keys need not be sequential, and need not be integers,
you may run into a scenario where you want to check if a value has
been set for a particular key.

To check if a value exists for a key, you can therefore use the isset()
function, which returns true if a value has been set, and false otherwise

Array Sorting

There are many built-in sort functions, which sort by key or by value.
To sort the $days array by its values you would simply use:

sort($days);

As the values are all strings, the resulting array would be:

Array ([0] => Fri [1] => Mon [2] => Sat [3] => Sun [4] => Thu [5] => Tue [6] => Wed)

A better sort, one that would have kept keys and values associated
together, is:

asort($days);

Array ([4] => Fri [0] => Mon [5] => Sat [6] => Sun [3] => Thu [1] => Tue [2] => Wed)

Sort it out

More array operations

• array_keys($someArray)

• array_values($someArray)

• array_rand($someArray, $num=1)

• array_reverse($someArray)

• array_walk($someArray, function call, optionalParam)

• in_array($someArray, $value)

• shuffle($someArray)

• …

Too many to go over in depth here…

Superglobal Arrays

PHP uses special predefined associative arrays
that allow the programmer tosuperglobal variables

access HTTP headers, query string parameters, and

called
easily
other

commonly needed information.

They are called superglobal because they are always in scope,
and always defined.

Section 2 of 5

$_GET AND $_POST SUPERGLOBAL
ARRAYS

$_GET and $_POST

The $_GET and $_POST arrays are the most important
superglobal variables in PHP since they allow the programmer
to access data sent by the client in a query string.

Sound familiar?

$_GET and $_POST

• Get requests parse query strings into the $_GET array

• Post requests are parsed into the $_POST array

This mechanism greatly simplifies accessing the data posted by the
user, since you need not parse the query string or the POST
request headers!

Sound familiar?

Determine if any data sent

Determine if any data sent

Accessing Form Array Data

Sometimes in HTML forms you might have multiple
values associated with a single name;

Accessing Form Array Data

Unfortunately, if the user selects more than one day and
submits the form, the $_GET['day'] value in the superglobal
array will only contain the last value from the list that was
selected.

To overcome this limitation, you must change the name
attribute for each checkbox from day to day[].

Monday <input type="checkbox" name="day[]" value="Monday" />

Tuesday <input type="checkbox" name="day[]" value="Tuesday" />

HTML tweaks for arrays of data

Accessing Form Array Data

After making this change in the HTML, the corresponding
variable $_GET['day'] will now have a value that is of type
array.

Meanwhile on the server

Using Query String in Links

Imagine a web page in which we are displaying a list of
book links. One approach would be to have a separate
page for each book.

Design idea

Using Query Strings in links
Not a great setup

Using Query Strings in links
Use the query string to reduce code duplication

Sanitizing Query Strings

Just because you are expecting a proper query string, doesn’t
mean that you are going to get a properly constructed query
string.

• distrust all user input

The process of checking user input for incorrect or missing
information is sometimes referred to as the process of sanitizing
user inputs.

Learn more about this in Chapter 11/12.

Sanitation
Don’t forget trim()

Section 3 of 5

$_SERVER ARRAY

$_SERVER

The $_SERVER associative array contains

• HTTP request headers (send by client)

• configuration options for PHP

To use the $_SERVER array, you simply refer to the
relevant case-sensitive keyname:

echo $_SERVER["SERVER_NAME"] . "
";

echo $_SERVER["SERVER_SOFTWARE"] . "
";

echo $_SERVER["REMOTE_ADDR"] . "
";

$_SERVER

SERVER INFORMATION KEYS

• SERVER_NAME contains the name of the site that
was requested

• SERVER_ADDR tells us the IP of the server

• DOCUMENT_ROOT tells us the location from which
you are currently running your script

• SCRIPT_NAME key that identifies the actual script
being executed

Request Header Keys

• REQUEST_METHOD returns the request method
that was used to access the page: that is, GET,
HEAD, POST, PUT

• REMOTE_ADDR key returns the IP address of the
requestor

• HTTP_USER_AGENT contains the operating system
and browser that the client is using

• HTTP_REFERER contains the address of the page
that referred us to this one (if any) through a link

Header Access Examples

Security
Headers can be forged

All headers can be forged!

• The HTTP_REFERER header can lie about where the
referral came from

• The USER_AGENT can lie about the operating
system and browser the client is using.

9.4 $_Files Array

The $_FILES associative array contains items that
have been uploaded to the current script.

<input type = “file”>
Creates a user interface for uploading a file

from the client to server.

A server Script must process the upload files in
some way ($_FILES array helps in this process)

• To allow users to upload files, there are some
specific things you must do,
– First, you must ensure that the HTML form uses

the HTTP post method, since transmitting a flie
through the URL is not possible.

– Second, You must add the enctype=
“multipart/form-data” attribute to the html form
that is performing the upload so that the HTTP
request can submit multiple pieces of data (HTTP
post body, the HTTP file attachment itself)

– Finally you must include an input type of file in
your form.

This will show up with a browse button beside it
so the user can select a file from their computer
to be uploaded.

• The Corresponding PHP file responsible for
handling the upload will utilize the superglobal
$_FILES array.

• This array will contain a key = value pair for each
file uploaded in the post.

• The key for each element will be the name
attribute from the HTML form, while the value
will be an array containing information about the
file as well as the file itself.

• The keys in that array are the name, type,
tmp_name, error and size.

• A proper file upload script will therefore check
each uploaded file by checking the various
error codes as below,

• There are three main mechanisms for
maintaining uploaded file size restrictions:
– Via HTML in the input form
– Via JavaScript in the input form
– Via PHP coding.

• You should also restrict the type of file
uploaded.

• You can make use of PHP function
move_uploaded_file, which takes in the
temporary file location and the file’s final
destination.

• This function will work only if the source file
exist and if the destination location is writable
by web server.

• There are two basic techniques for read/writing files in PHP
– Stream Access : In this technique, our code will read just a

small portion of the file at a time. While this does require
more careful programming, it is the most efficient
approach when reading large files.

– All – In – Memory access: In this technique, we can read
the entire file into memory (I.e., into PHP variable). While
not appropriate for large files, it does make processing of
file extremely easy.

To Read an entire file into variable

PHP Classes and Objects

Chapter 10

Section 1 of 3

OBJECT-ORIENTED OVERVIEW

Overview

PHP is a full-fledged object-oriented language with many of
the syntactic constructs popularized in languages like Java and
C++.

Earlier versions of PHP do not support all of these object-
oriented features,

• PHP versions after 5.0 do

Object-Oriented Overview

Terminology

The notion of programming with objects allows the developer
to think about an item with particular properties (also called
attributes or data members) and methods (functions).

The structure of these objects is defined by classes, which
outline the properties and methods like a blueprint.

Each variable created from a class is called an object or
instance, and each object maintains its own set of variables, and
behaves (largely) independently from the class once created.

Object-Oriented Terminology

Relationship between Class and
Objects

UML

The standard diagramming notation for object-oriented
design is UML (Unified Modeling Language).

Class diagrams and object diagrams, in particular, are useful
to us when describing the properties, methods, and
relationships between classes and objects.

For a complete definition of UML modeling syntax, look at
the Object Modeling Group’s living specification

The Unified Modelling Language

UML Class diagram
By example

Every Artist has a

• first name,

• last name,

• birth date,

• birth city, and

• death date.

Using objects we can encapsulate those properties
together into a class definition for an Artist.

UML articulates that design

UML Class diagram
Class and a couple of objects

UML Class diagram
Different levels of detail

Server and Desktop Objects
Not the same

While desktop software can load an object into memory and
make use of it for several user interactions, a PHP object is
loaded into memory only for the life of that HTTP request.

We must use classes differently than in the desktop world,
since the object must be recreated and loaded into memory

Unlike a desktop, there are potentially many thousands of
users making requests at once, so not only are objects
destroyed upon responding to each request, but memory must
be shared between many simultaneous requests, each of which
may load objects into memory or each request that requires it

Server and Desktop Objects
Not the same

Section 2 of 3

OBJECTS AND CLASSES IN PHP

Defining Classes
In PHP

The PHP syntax for defining a class uses the class keyword
followed by the class name and { } braces

Instantiating Objects
In PHP

Defining a class is not the same as using it. To make use of a
class, one must instantiate (create) objects from its definition
using the new keyword.

$picasso = new Artist();

$dali = new Artist();

Properties
The things in the objects

Once you have instances of an object, you can access and
modify the properties of each one separately using the
variable name and an arrow (->).

Constructors
A Better way to build

Constructors let you specify parameters during instantiation to
initialize the properties within a class right away.

In PHP, constructors are defined as functions (as you shall see, all
methods use the function keyword) with the name

construct().(two underscore).

Notice that in the constructor each parameter is assigned to an
internal class variable using the $this-> syntax. you must always
use the $this syntax to reference all properties and methods
associated with this particular instance of a class.

Constructors
An Example

Constructors
Using the constructor

$picasso = new Artist("Pablo","Picasso","Malaga","Oct 25,1881","Apr 8,1973");

$dali = new Artist("Salvador","Dali","Figures","May 11 1904", "Jan 23 1989");

Methods
Functions In a class

Methods and are like functions, except they are associated with a
class.

They define the tasks each instance of a class can perform and are
useful since they associate behavior with objects.

$picasso = new Artist(. . .)

echo $picasso->outputAsTable();

Methods
The example definition

Methods
UML class diagrams adding the method

Visibility
Or accessibility

The visibility of a property or method determines the
accessibility of a class member and can be set to:

• Public the property or method is accessible to any code that
has a reference to the object

• Private sets a method or variable to only be accessible from
within the class

• Protected is related to inheritance…

Visibility
Or accessibility

Static Members

A static member is a property or method that all instances of
a class share.

Unlike an instance property, where each object gets its own
value for that property, there is only one value for a class’s static
property.

Static members use the self:: syntax and are not associated
with one object

They can be accessed without any instance of an Artist object
by using the class name, that is, via Artist::$artistCount.

Static Members

Static Members
Uml again

Class constants
Never changes

Constant values can be stored more efficiently as class
constants so long as they are not calculated or updated

They are added to a class using the const keyword.

const EARLIEST_DATE = 'January 1, 1200';

Unlike all other variables, constants don’t use the $ symbol
when declaring or using them.

Accessed both inside and outside the class using

• self::EARLIEST_DATE in the class and

• classReference::EARLIEST_DATE outside.

Section 3 of 3

OBJECT ORIENTED DESIGN

Data Encapsulation

Perhaps the most important advantage to object-oriented
design is the possibility of encapsulation, which generally refers
to restricting access to an object’s internal components.

Another way of understanding encapsulation is: it is the
hiding of an object’s implementation details

A properly encapsulated class will define an interface to the
world in the form of its public methods, and leave its data, that
is, its properties, hidden (that is, private).

What is it?

Data Encapsulation

If a properly encapsulated class makes its properties private,
then how do you access them?

• getters

• setters

Getters and setters

Data Encapsulation

A getter to return a variable’s value is often very
straightforward and should not modify the property.

public function getFirstName() {

return $this->firstName;

}

Getters

Data Encapsulation

Setter methods modify properties, and allow extra logic to be added to
prevent properties from being set to strange values.

public function setBirthDate($birthdate){
// set variable only if passed a valid date string
$date = date_create($birthdate);
if (! $date) {

$this->birthDate = $this->getEarliestAllowedDate();
}
else {
// if very early date then change it to
// the earliest allowed date

if ($date < $this->getEarliestAllowedDate()) {
$date = $this->getEarliestAllowedDate();

}
$this->birthDate = $date;

}

}

Setters

Data Encapsulation
UML

Data Encapsulation
Using an encapsulated class

Inheritance

Inheritance enables you to create new PHP classes that reuse,
extend, and modify the behavior that is defined in another
PHP class.

• PHP only allows you to inherit from one class at a time

• A class that is inheriting from another class is said to be a
subclass or a derived class

• The class that is being inherited from is typically called a
superclass or a base class

A PHP class is defined as a subclass by using the extends
keyword.

class Painting extends Art { . . . }

Example usage

$p = new Painting();

. . .

echo $p->getName(); // defined in base class

echo $p->getMedium(); // defined in subclass

Inheritance
There’s UML for that too

Protected access modifier
Remember Protected?

A More Complex Example
Using inheritance

Extended example

/* The abstract class that
contains functionality required by
all types of Art */

abstract class Art {

private $name;

private $artist;

private $yearCreated;

//… constructor, getters, setters

All art has certain properties

Extended example

class Painting extends Art {

private $medium;

//…constructor, getters, setters

public function toString() {

return parent:: toString() . ", Medium: " .
$this->getMedium();

}

}

Painting require a“medium”

Extended example

class Sculpture extends Art {

private $weight;

//…constructor, getters, setters

public function toString() {

return parent:: toString() . ", Weight: " .

$this->getWeight() ."kg";

}
}

Sculptures have weight

Extended example

…

$picasso = new Artist("Pablo","Picasso","Malaga","May 11,904”,"Apr 8, 1973");

$guernica = new Painting("1937",$picasso,"Guernica”, "Oil on canvas");

$woman = new Sculpture("1909",$picasso,"Head of a Woman", 30.5);

?>

<h2>Paintings</h2>

<p>Use the toString() methods </p>

<p><?php echo $guernica; ?></p>

<h2>Sculptures</h2>

<p> <?php echo $woman; ?></p>

Using the classes

Polymorphism

Polymorphism is the notion that an object can in fact be multiple things
at the same time.

Consider an instance of a Painting object named $guernica created as
follows:

$guernica = new Painting("1937",$picasso,"Guernica","Oil on canvas");

The variable $guernica is both a Painting object and an Art object due to
its inheritance.

The advantage of polymorphism is that we can manage a list of Art
objects, and call the same overridden method on each.

No thank you, I’ll have water

Polymorphism

Interfaces

An object interface is a way of defining a formal list of
methods that a class must implement without specifying their
implementation.

Interfaces are defined using the interface keyword, and look
similar to standard PHP classes, except an interface contains
no properties and its methods do not have method bodies
defined.

interface Viewable {

public function getSize();

public function getPNG();

}

Defining the interface

Interfaces

In PHP, a class can be said to implement an interface,
using the implements keyword:

class Painting extends Art implements Viewable { ... }

This means then that the class Painting must provide
implementations for the getSize() and getPNG() methods.

Implementing the Interface

Interface Example

Interfaces
An Extended example

Error Handling and Validation

Chapter 12

Section 1 of 6

WHAT ARE ERRORS AND
EXCEPTIONS?

Types of Errors

• Expected errors

Things that you expect to go wrong. Bad user input, database
connection, etc…

• Warnings

problems that generate a PHP warning message but will not
halt the execution of the page

• Fatal errors

are serious in that the execution of the page will terminate
unless handled in some way

Isset() : returns true if a variable is not null.

Empty() : returns true if a variable is null, false, zero or an
empty string.

Checking user input
Checking for values

Checking user input
Checking for a number

Exceptions vs Errors
Not the same thing

• An error is some type of problem that generates a
nonfatal warning message or that generates an error
message that terminates the program’s execution.

• An exception refers to objects that are of type Exception
and which are used in conjunction with the object-
oriented try . . . catch language construct for dealing with
runtime errors.

Section 2 of 6

PHP ERROR REPORTING

PHP error reporting
Lots of control

PHP has a flexible and customizable system for reporting warnings
and errors that can be set programmatically at runtime or
declaratively at design-time within the php.ini file. There are three
main error reporting flags:

• error_reporting

• display_errors

• log_errors

The error_reporting setting
What is an error?

The error_reporting setting specifies which type of errors are to
be reported.

It can be set programmatically inside any PHP file:

error_reporting(E_ALL);

It can also be set within the php.ini file:

error_reporting = E_ALL

The error_reporting setting
Some error reporting constants

Constant
Name Value Description

E_ALL 8191 Report all errors and warnings

E_ERROR 1 Report all fatal runtime errors

E_WARNING 2 Report all nonfatal runtime errors (that is,
warnings)

0 No reporting

The display_errors setting
To show or not to show

The display_error setting specifies whether error messages
should or should not be displayed in the browser.

It can be set programmatically via the ini_set() function:

ini_set('display_errors','0');

It can also be set within the php.ini file:

display_errors = Off

The log_error setting
To record or not to record

The log_error setting specifies whether error messages should
or should not be sent to the server error log.

It can be set programmatically via the ini_set() function:

ini_set('log_errors','1');

It can also be set within the php.ini file:

log_errors = On

The log_error setting
Where to store.

The location to store logs in can be set programatically:

ini_set('error_log', '/restricted/my-errors.log');

It can also be set within the php.ini file:

error_log = /restricted/my-errors.log

The log_error setting
Error_log()

You can also programmatically send messages to the error
log at any time via the error_log() function

Section 3 of 6

PHP ERROR AND EXCEPTION
HANDLING

Procedural Error Handling

Recall connecting to a database, that there may be an error…

OO Exception Handling
Try, catch,finally

When a runtime error occurs, PHP throws an exception.

This exception can be caught and handled either by the
function, class, or page that generated the exception or by the
code that called the function or class.

If an exception is not caught, then eventually the PHP
environment will handle it by terminating execution with an
“Uncaught Exception” message.

OO Exception Handling
Try, catch,finally

OO Exception Handling
Finally

The finally block is optional. Any code within it will
always be executed after the code in the try or in the catch
blocks, even if that code contains a return statement.

The finally block is only available in PHP 5.5 and later

Throw your own exception
Object oriented way of dealing with the unexpected

Custom Handlers
Error and Exception Handlers

It is possible to define your own handler for uncaught errors and
exceptions, the mechanism for doing so varies depending upon
whether you are using the procedural or object oriented
mechanism for responding to errors.

If using the procedural approach(i.e, not using try…catch) you
can define a custom error handling function and then register it
with

set_error_handler()

If you are using the object oriented exception approach with
try… catch blocks, you can define a custom exception handling
function and then register it with

set_exception_handler()

Custom Handlers
Error and Exception Handlers

What should a custom error or exception handler do?

It should provide the developer with detailed information
about the state of the application when the exception
occurred, information about the exception, and when it
happened.

It should hide any of those details from the regular end user,
and instead provide the user with a generic message such as
“Sorry but there was a problem”

Once a handler function is defined, it must be registered,
using the following code:

set_exception_handler('my_exception_handler');

Custom Handlers
Error and Exception Handlers

END
OF

MODULE 4

