WEB TECHNOLOGY AND ITS
APPLICATIONS

MODULE 4 - SYLLABUS

 PHP Arrays and Superglobals, Arrays, S GET and
S _POST Superglobal Arrays,S SERVER Array, S Files
Array, Reading/Writing Files, PHP Classes andObjects,
Object-Oriented Overview, Classes and Objects in
PHP, Object Oriented Design, Error Handling and
Validation, What are Errors and Exceptions?, PHP
Error Reporting, PHP Error and Exception Handling

PHP Arrays and Superglobals

Chapter 9

1

ARRAYS

Arrays

Background

An array is a data structure that

* Collects a number of related elements together in a single
variable.

* Allows the set to be Iterated

e Allows access of any element

Since PHP implements an array as a dynamic structure:
* Add to the array

 Remove from the array

Arrays

KeyValue

In PHP an array is actually an ordered map, which associates
each value in the array with a key.

0 [1 | 2 | 3 | 4 |Keys

$days <

"Mon™ | "Tue" | "Wed" | "Thu" | "Fr1" | Values

Arrays

Keys

Array keys are the means by which you reer to single element in
the array.

In most programming languages array keys are limited to
integers, start at 0, and go up by 1.

In PHP, array keys must be either integers or strings and need not
be sequential.

 Don’t mix key typesi.e. “1” vs 1

* |If you don’t explicitly define them they are 0,1,...

Arrays

Values

Array values, unlike keys, are not restricted to integers and
strings.

They can be any object, type, or primitive supported in PHP.

You can even have objects of your own types, so long as the
keys in the array are integers and strings.

Arrays

Defining an array

The following declares an empty array named days:
Sdays = array();

You can also initialize it with a comma-delimited list of values
inside the () braces using either of two following syntaxes:

Sdays = array("Mon","Tue","Wed","Thu","Fri");

Sdays = ["Mon","Tue","Wed","Thu","Fri"]; // alternate

Arrays

Defining an array

You can also declare each subsequent element in the array
individually:

Sdays = array();

Sdays[0] = "Mon"; //set 0t key’s value to “Mon”

Sdays[1] = "Tue";

// also alternate approach

SdaysB = array();

SdaysB[] = "Mon"; //set the next sequential value to “Mon”
SdaysB[] = "Tue";

Arrays

Access values

To access values in an array you refer to their key using the
square bracket notation.

echo "Value at index 1 is ". Sdays[1];

Keys and Values

In PHP, you are also able to explicitly define the keys in addition to
the values.

This allows you to use keys other than the classic0,1,2,...,nto
define the indexes of an array.

key
1
arlrnay(o => IlMonII’ 1 => IITueII’ 2 => IIWedII' 3 => IIThuII’ 4=> IlFrill);

0

value

$days =

Super Explicit

Array declaration with string keys, integer values

key
sl
$forecast = array("Mon" => 40, "Tue" => 47, "Wed" => 52, "Thu" => 40, "Fri" => 37);
T
value

HMonll | "Tuell ‘ "wedll | "Thull ’ "Fr,_i " Keys

$forecast < l l v l l

40 | 47 | 52 | 40 | 37 |Values

\.

echo $forecast["Tue"]; // outputs 47
echo $forecast["Thu"]; // outputs 40

Multidimensional Arrays

Creation

Smonth = array(
array("Mon","Tue","Wed","Thu","Fri"),
array("Mon","Tue","Wed","Thu","Fri"),
array("Mon","Tue","Wed","Thu","Fri"),
array("Mon","Tue","Wed","Thu","Fri")

);

echo Smonth[0][3]; // outputs Thu

Multidimensional Arrays

Access

$month —

v

$month[0][3]

0 1 | 2 | 3 | 4 |
Mon | Tue | Wed | Thu | Fri
0 1] 2 | 3 | 4
Mon | Tue | Wed | Thu | Fri
0 1 1 2 | 3 | 4
Mon | Tue | Wed | Thu | Fri
0 1] 2 | 3 | 4
Mon | Tue | Wed | Thu | Fri |

t

$month[3][2]

Multidimensional Arrays

Another example

Scart = array();
Scart[] = array("id" => 37, "title" => "Burial at Ornans", "quantity" => 1);
Scart[] = array("id" => 345, "title" => "The Death of Marat", "quantity" => 1);

Scart[] = array("id" => 63, "title" => "Starry Night", "quantity" => 1);

"id" | "title" | "quantity"
— 0
Faare 37 | "Burial at Ornans" | 1

"id" | "title" | "quantity"

& 345 |"The Death of Marat"| il
"id" | "title" | "quantity"

2 : <
63 | "Starry Night" | il |

— T $cart[2]["title"]

lterating through an array

// while loop

$i=0;

while (%1 < count($days)) {
echo $days[$1] . "
";
$i++;

// do While loop

$1=0;

do {
echo $days[$i] . "
";
$1++;

} while (%1 < count($days));

/7 for loop

for ($1=0; $i<count($days); $i++) {
echo $days[$i] . "
";

}

LISTING 9.2 Iterating through an array using while, do while, and for loops

lterating through an array

Foreach loop is pretty nice

The challenge of using the classic loop structures is that when
you have nonsequential integer keys (i.e., an associative array),
you can’t write a simple loop that uses the Si++ construct. To
address the dynamic nature of such arrays, you have to use
iterators to move through such an array.

// foreach: iterating through the values
foreach ($forecast as fvalue) {
echo $value . "
";

}

// Toreach: iterating through the values AND the keys
foreach ($forecast as S$key => $value) {

echo "day" . Skey . "=" . $value;
}

LISTING 9.3 Iterating through an associative array using a foreach loop

Adding to an array

To an array

An element can be added to an array simply by using a key/index
that hasn’t been used

Sdays[5] = "Sat";
A new element can be added to the end of any array

Sdays[] ="Sun";

Adding to an array

And quickly printing

PHP is more than happy to let you “skip” an index
Sdays = array("Mon","Tue","Wed","Thu","Fri");
Sdays[7] = "Sat";

print_r(Sdays);
Array ([0] => Mon [1] => Tue [2] => Wed [3] => Thu [4] => Fri [7] => Sat)’

If we try referencing Sdays[6], it will return a NULL value

Deleting from an array

You can explicitly delete array elements using the unset() function

$day5 —_ arr’ay("MDn”’"TuE"’"wed"’"Thu"’"Fr-i II);

unset($days[2]);
unset($days[3]);

print_r(%days); // outputs: Array ([0] => Mon [1] => Tue [4] => Fri)

$days = array_values($days);
print_r(38days); // outputs: Array ([0] => Mon [1] => Tue [2] => Fri)

LISTING 9.4 Deleting elements

Deleting from an array

You can explicitly delete array elements using the unset() function.

array_values() reindexes the array numerically

$day5 — array("MDn" . “Tue" , "wed!'l ’ rIThurl ’ "Fr'i n) ;

unset($days[2]);
unset($days[3]);

print_r(%days); // outputs: Array ([0] => Mon [1] => Tue [4] => Fri)

$days = array_values($days);
print_r(8days); // outputs: Array ([0] => Mon [1] => Tue [2] => Fri)

LISTING 9.4 Deleting elements

Checking for a value

Since array keys need not be sequential, and need not be integers,
you may run into a scenario where you want to check if a value has
been set for a particular key.

To check if a value exists for a key, you can therefore use the isset()
function, which returns true if a value has been set, and false otherwise

$oddKeys = array (1 => "hello", 3 => "world", 5 => "1");

it (isset($oddKeys[0])) {
// The code below will never be reached since $oddKeys[0] is not set!
echo "there is something set for key 0";

}

if (isset($oddKeys[1])) {
// This code will run since a key/value pair was defined for key 1
echo "there is something set for key 1, namely ". $oddKeys[1];

}

LISTING 9.5 lllustrating nonsequential keys and usage of isset()

Array Sorting

Sort it out

There are many built-in sort functions, which sort by key or by value.
To sort the Sdays array by its values you would simply use:

sort(Sdays);
As the values are all strings, the resulting array would be:
Array ([0] => Fri [1] => Mon [2] => Sat [3] => Sun [4] => Thu [5] => Tue [6] => Wed)

A better sort, one that would have kept keys and values associated
together, is:

asort(Sdays);

Array ([4] => Fri [0] => Mon [5] => Sat [6] => Sun [3] => Thu [1] => Tue [2] => Wed)

More array operations

Too many to go over in depth here...

e array_keys(SsomeArray)

* array_values(SsomeArray)

* array_rand(SsomeArray, Snum=1)
 array_reverse(SsomeArray)

» array_walk(SsomeArray, function call, optionalParam)
* in_array(SsomeArray, Svalue)

* shuffle(SsomeArray)

Superglobal Arrays

PHP uses special predefined associative arrays called
superglobal variables that allow the programmer to easily
access HTTP headers, query string parameters, and other
commonly needed information.

They are called superglobal because they are always in scope,
and always defined.

9.1.7 Superglobal Arrays

PHP uses special predefined associative arrays called superglobal variables that allow
the programmer to easily access HT TP headers, query string parameters, and other
commonly needed information (see Table 9.1). They are called superglobal because

these arrays are always in scope and always exist, ready for the programmer to access
or modify them without having to use the global keyword as in Chapter 8.

Name Description

$GLOBALS Array for storing data that needs superglobal scope

$ COOKIES Array of cookie data passed to page via HTTP request

$ ENV Array of server environment data

¥ _FILES Array of file items uploaded to the server

% GET Array of query string data passed to the server via the URL

$ POST Array of query string data passed to the server via the HTTP header
% REQUEST Array containing the contents of §_GET, § POST, and §_COOKIES
% SESSION Array that contains session data

$_SERVER Array containing information about the request and the server

TAELE 9.1 Sugerglobal Variables

Section 2 of 5

$_GET AND $_POST SUPERGLOBAL
ARRAYS

S GETand S POST

Sound familiar?

The S GET and S POST arrays are the most important
superglobal variables in PHP since they allow the programmer
to access data sent by the client in a query string.

<form action="processLogin.php" method="GET">
Name <input type="text" name="uname" />
HTML Pass <input type="text" name="pass" />
(client) <input type="submit">
l </form>

Browser

(client) Name |ricardo ‘ Pass [pw01 ’ Submit Query |

HTTP v

request GET processlLogin.php?uname=ricardo&pass=pw0l

l

PHP
(server)

// within fileprocesslLogin.php
echo $_GET["uname"]; // outputs ricardo
echo $_GET["pass"]; // outputs pw0l

S GETand S POST

Sound familiar?

* Get requests parse query strings into the S_GET array

* Post requests are parsed into the S _POST array

This mechanism greatly simplifies accessing the data posted by the
user, since you need not parse the query string or the POST
request headers!

Determine if any data sent

<!DOCTYPE html>
<html>
<body>
<?php
if ($_SERVER["REQUEST_METHOD"] == "POST") {
if (isset($_POST["uname"]) && isset($ POST["pass"])) {
// handle the posted data.
echo "handling user login now ...";
echo "
echo

here we could redirect or authenticate ";
and hide login form or something else";

3

7>

<h1l>Some page that has a login form</hl>

<form action="samplePage.php” method="POST">
Name <input type="text" name="uname"/>

Pass <input type="password" name="pass'"/>

<input type="submit"'>

</form>

</body>

</html>

LISTING 9.6 Using isset() to check query string data

Determine if any data sent

9 Checks whether any form data has
? Request for been submitted (answer is no)

login.php

login.php

User Name: [Testuser]
Password:

l Submit |

€) Request for Togin. php

@) Checks whether any form data has been
submitted (answer is yes this time)

rlogin.php

User Name:| testuser |

Password: | | © Performs some type of

User and password don't exist precesing on form data)
(such as checking credentials

in database and displaying

error message).

Accessing Form Array Data

Sometimes in HTML forms you might have multiple
values associated with a single name;

<form method="get">
Please select days of the week bou are free.

Monday <input type="checkbox" name="day" value="Monday" />

Tuesday <input type="checkbox" name="day" value="Tuesday" />

Wednesday <input type="checkbox" name="day" value="Wednesday" />

Thursday <input type="checkbox" name="day" value="Thursday" />

Friday <input type="checkbox" name="day" value="Friday" />

<input type="submit" value="Submit">

</form>

LISTING 9.7 HTML that enables multiple values for one name

Accessing Form Array Data

HTML tweaks for arrays of data

Unfortunately, if the user selects more than one day and
submits the form, the S_GET['day'] value in the superglobal
array will only contain the last value from the list that was
selected.

To overcome this limitation, you must change the name
attribute for each checkbox from day to day]].

Monday <input type="checkbox" name="day[]" value="Monday" />

Tuesday <input type="checkbox" name="day[]" value="Tuesday" />

Accessing Form Array Data

Meanwhile on the server

After making this change in the HTML, the corresponding
variable S_GET['day'] will now have a value that is of type
array.

<7php
echo "You submitted " . count($_GET['day']) . "values";
foreach ($ GET['day'] as $d) {
echo $d . ", ";
}
7>

LISTING 9.8 PHP code to display an array of checkbox variables

Using Query String in Links

Designidea

Imagine a web page in which we are displaying a list of
book links. One approach would be to have a separate
page for each book.

Using Query Strings in links

Not a great setup

Browser

Elementary Algebra

The Curious Writer

Using MIS

Database Processing

elementaryAlgebra.php

curiousWriter.php
]

Using Query Strings in links

Use the query string to reduce code duplication

Browser
I displayBook.php
——

Elementary Algebra

The Curious Writer

Using MIS

Database Processing %

Database Processing

LN J
Y

Query string

Sanitizing Query Strings

Just because you are expecting a proper query string, doesn’t
mean that you are going to get a properly constructed query
string.

e distrust all user input

The process of checking user input for incorrect or missing
information is sometimes referred to as the process of sanitizing
user inputs.

Learn more about this in Chapter 11/12.

Sanitation

Don’t forget trim()

// This uses a database API . . . we will learn about it in Chapter 11
$pid = mysqli_real_escape_string($link, $ GET['id']);

if (is_int($pid)) {
// Continue processing as normal

}
else {

// Error detected. Possibly a malicious user
}

LISTING 9.9 Simple sanitization of query string values

Section 3 of 5

$_SERVER ARRAY

¢ SERVER

The S_SERVER associative array contains

 HTTP request headers (send by client)

* configuration options for PHP

Touse the S_SERVER array, you simply refer to the
relevant case-sensitive keyname:

echo S SERVER
echo S SERVER

echo S SERVER

"SERVER_NAME"] . "
";

"SERVER_SOFTWARE"] . "
";

"REMOTE_ADDR"] . "
";

¢ SERVER

$_SERVER['R

EQUEST_METHOD'] $_SERVER['SERVER_PROTOCOL"']

1 i

$_SERVER['REQUEST_TIME']—

$_SERVER["HTTP_USER_AGENT'] —

$_SERVER["HTTP_CONNECTION']—

POST /page.php http/1.1
Date: Sun, 20 May 2012 23:59:59 GMT

Host: www.mysite.com
User-Agent: Mozilla/4.0

Accept-Encoding: gzip
Connection: Keep-Alive

<html> ..

HTTP Request Header

$_SERVER["HTTP_HOST"']

$_SERVER["HTTP_ACCEPT_ENCODING"']

$_SERVER['SERVER_NAME']
$_SERVER['SERVER_ADDR']
$_SERVER['SERVER_PORT']

SERVER INFORMATION KEYS

 SERVER_NAME contains the name of the site that
was requested

« SERVER_ADDR tells us the IP of the server

« DOCUMENT_ROQOT tells us the location from which
you are currently running your script

 SCRIPT_NAME key that identifies the actual script
being executed

Request Header Keys

e REQUEST_METHOD returns the request method
that was used to access the page: that is, GET,
HEAD, POST, PUT

« REMOTE_ADDR key returns the IP address of the
requestor

« HTTP_USER_AGENT contains the operating system
and browser that the client is using

e HTTP_REFERER contains the address of the page
that referred us to this one (if any) through a link

Header Access Examples

<?php
echo $_SERVER['HTTP_USER_AGENT'];

$browser = get_browser($_SERVER['HTTP_USER_AGENT'], true);
print_r($browser);
P

LISTING 9.10 Accessing the user-agent string in the HTTP headers

$previousPage = $_ SERVER['HTTP_REFERER'];

// Check to see 1f referer was our search page

if (strpos("search.php",$previousPage) != 0) {
echo "Back to search";

}
// Rest of HTML output

LISTING 9.11 Using the HTTP_REFERER header to provide context-dependent output

Security

Headers can be forged

All headers can be forged!

e The HTTP_REFERER header can lie about where the
referral came from

e The USER_AGENT can lie about the operating
system and browser the client is using.

9.4 S Files Array

“#*The S_FILES associative array contains items that
have been uploaded to the current script.

<input type = “file”>

Creates a user interface for uploading a file
from the client to server.

A server Script must process the upload files in
some way (S_FILES array helps in this process)

g 4

[
= 0 & N

Rraxil

HTML Required for File Uploads

* To allow users to upload files, there are some
specific things you must do,

— First, you must ensure that the HTML form uses
the HTTP post method, since transmitting a flie
through the URL is not possible.

— Second, You must add the enctype=

“multipart/form-data” attribute to the html form
that is performing the upload so that the HTTP
request can submit multiple pieces of data (HTTP
post body, the HTTP file attachment itself)

— Finally you must include an input type of file in
your form.

This will show up with a browse button beside it
so the user can select a file from their computer
to be uploaded.

<form enctype="multipart/form-data' method="post'>
<input type="Tile' name="filel" id="filel" />
<input type='submit' />

</form>

LISTING 9.12 HTML for a form that allows an upload

3.4.2 Handling the File Upload in PHP

The Corresponding PHP file responsible for
handling the upload will utilize the superglobal
S_FILES array.

This array will contain a key = value pair for each
file uploaded in the post.

The key for each element will be the name
attribute from the HTML form, while the value
will be an array containing information about the
file as well as the file itself.

The keys in that array are the name, type,
tmp_name, error and size.

¢ name s a string containing the full file name used on the client machine, including
any file extension. It does not include the file path on the client’s machine.

1 type defines the MIME type of the file, This value is provided by the client
browser and is therefore not a reliable freld.

s tmp_name is the full path to the location on your server where the file is bein
temporarily stored. The file will cease to exist upon termination of the scrip
so 1t should be copied to another location if storage is required.

s error is an Integer that encodes many possible errors and 1s set to
UPLOAD_ERR_OK (integer value 0) if the file was uploaded successtully.

1 sizeis an integer representing the size in bytes of the uploaded file.

<form enctype="multipart/form-data’ method="post' action="upFile.php'>
HTML <input type="file " name="f1lel"' />
(cliamt) <input type="submit' /=
l </ form:
Browser

{cliant) |C:\Users\ricardo'Pictures\Sample1.png Browse... | Submit Query |

HTTP POST upkile.php l

request HTTPF POST multipartform-data

Fi1elEPNG ™1 | McOk4FE+IH20%0R) Sra vOLIN oc/B(-A A T3/ v\ A(n-Miz WE_E/H1,+* _AEA") .p/f
_Bvifnd™ BRuOACAEN"O0TOV. 1 °m K&Zhe e~ |OAGT cD"WiMi Di_SRSnY02'A® kn'Nyph 32°.7" d®8i-\

jOhe}>’ $¥] BEBEE[$Wué | TxMWNLIAE, [OZ1pd Xt kO =0 "chyl=¢ ADTOO-{lk¥<IRadd «1'4; 7)1 -Weddd
04,0687 £SEC EI0L1Eee” B {02459 0R [¥bisoiz™WydDEu Aad_ A ¢ jnznumi:'i B "-a4'-AIT'|i0G W1 *
2o 80 AY £ hECA 424¥i>EfZTE«0T _A| —DE[%AscE nisBé*i0mfa 1 i?n-:u‘l' D_i&T\EA /

#sl"BNLTay " >qaila T-57B0« 4284, RBod'PrdiT1Meri THxBE 74 sl dopl 07.1) ; M=d§éd >
*1A:K{*Cadand Usx *wn Aef] 113, A" FAuEL B>y EARCEUD jhsxebosia® BN -BowESe’ (GFACIION Ted

Y

echo § _FILES["fi1e1"]["name"] f/ "Samplel.png”
PHP echo § FILES["filel"] [type™] S/ "image/png”
(server) echo 3 _FILES["fil1el™]["tmp_file"] FrT fomp/phpl08pVh"™
echo 3 _FILES["filel™] [Merrar”] ff 0
echo § FILES["fi1el"]["si1ze™] J/ 1219038

FIGURE 9.12 Data flow from HTML form through POST to PHP $_FILES array

9.4.3 Checking for Exrrors

Error Code Integer Meaning

UPLOAD ERR OK 0 Upload was successful.

UPLOAD ERR_INI SIZE 1 The uploaded file exceeds the upload_max_
filesize directive in php.ini.

UPLOAD ERR_FORM SIZE 2 The uploaded file exceeds the max_file_
s1ze directive that was specified in the
HTML form.

UPLOAD ERR_PARTIAL 3 The file was only partially uploaded.

UPLOAD ERR NO FILE 4 Mo file was uploaded. Not always an error,

since the user may have simply not chosen a
file for this field.

UPLOAD ERR NO TMP DIR & Missing the temporary folder.
UPLOAD ERR CANT WRITE 7 Failed to write to disk.
UPLOAD ERR EXTENSION 8 A PHP extension stopped the upload.

TABLE 9.2 Error Codes in PHP for File Upload Taken from php.net.®

* A proper file upload script will therefore check
each uploaded file by checking the various
error codes as below,

foreach ($ FILES as $filekKey => $fileArray) {
if ($3fileArray["error”] != UPLOAD ERR OK) { // error
echo "Error: " . ¥filekey . " has error" . Jfilefrray["error"]
R gk
}
else { // no error
echo $fileKey . "Uploaded successfully “;

}
}

LISTING 9.13 Checking each file uploaded for errors

9.4.4 File Size Restrictions

There are three main mechanisms for
maintaining uploaded file size restrictions:
— Via HTML in the input form

— Via JavaScript in the input form

— Via PHP coding.

<form enctype="mul tipart/form-data' method="post'>
<input type="hidden" name="MAX_ FILE SIZE" wvalue="1000000" />
<input type='file' name="filel' />
<input type='submit' />

</form>

LISTING 9.14 Limiting upload file size via HTML

<script>
var file = document.getElementById{ 'filel');
var max_size = document.getElementByIld("max file _size").value;
if (file.files && file.files.length =1){
if (file.files[0].size > max _size) {
alert("The file must be less than " + (max size/1024) + "KB");
e.preventDefaul t();

}
}

</script>

LISTING 9.15 Limiting upload file size via JavaScript

fmax_file size = 10000000;
foreach($ FILES as $fileKey => $fileArray) {
if (§fileArray[“size"] > $max_file size) {
echo "Error: " . $fileKey . " is too big";

1
printf("%s is %.2f KB", §filekey, §fileArray["size"]/1024);

}

LISTING 9.16 Limiting upload file size via PHP

9.4.5 Limiting the Type of File Upload

* You should also restrict the type of file
uploaded.

$validExt = arrav("jpg", "png");
fvalidMime = array("image/jpeg"”,"image/png") ;
foreach(% _FILES as §fileKey => §fileArray){
fextension = end(explode(”."”, $fileArray["name"]));
if (in_array($fileArray["type"], $validMime) &&
in_array(fextension, JvalidExt)) {
echo "all is well. Extension and mime types wvalid";
1

else {
echo $filekey.” Has an invalid mime type or extension”;

}
}

LISTING 9.17 PHP code to look for valid mime types and file extensions

9.4.6 Moving the File

* You can make use of PHP function
move_uploaded file, which takes in the

temporary file location and the file’s final
destination.

This function will work only if the source file
exist and if the destination location is writable
by web server.

$fileloMove = § FILES['filel']["tmp _name’];

}destination = "./upload/™ . $_FILES["filel™]["name™];

if (move_uploaded file(3fileToMove,$destination)) {
echo "The file was uploaded and moved successfully!™;

}
else {

echo "there was a problem moving the file";
}

LISTING 9.18 Using move_uploaded_file() function

9.5 Reading/Writing Files

* There are two basic techniques for read/writing files in PHP

— Stream Access : In this technique, our code will read just a
small portion of the file at a time. While this does require
more careful programming, it is the most efficient
approach when reading large files.

— All=In—=Memory access: In this technique, we can read
the entire file into memory (l.e., into PHP variable). While
not appropriate for large files, it does make processing of
file extremely easy.

9.5.1 Stream Access

The function fopen() takes a file location or URL and access mode as param-
eters. The returned value is a stream resource, which you can then read sequentially.
Some of the common modes are “t” for read, “rw” for read and write, and “c,”
which creates a new file for writing.

Once the file is opened, vou can read from it in several ways. To read a single
line, use the fgets(} function, which will return false if there is no more data, and
if it reads a line it will advance the stream forward to the next one so vyou can use
the === check to see if vou have reached the end of the file. To read an arbitrary
amount of data (typically for binary files), use fread() and for reading a single
character use fgetsc(). Finally, when finished processing the file you must close it
using fclose(). Listing 9.19 illustrates a script using fopen(), fgets(), and
fclose() to read a file and echo it out (replacing new lines with
 tags).

$f = fopen("sample.txt", "r");
$In = 0;
while ($1ine = fgets($f)) {
$1n++;
printf("%2d: ", $1n);
echo $line . "<br=";
1
fclose($1) ;

LISTING 9.19 Opening, reading lines, and closing a file

9.5.2 In-Memory File Access

Function Description

file() Reads the entire file into an array, with each array element
corresponding to one line in the file

file get contents Reads the entire file into a string variable

file put contents Writes the contents of a string variable out to a file

TABLE 9.3 In-Memory File Functions

To Read an entire file into variable

$fileAsString = file get _contents{FILENAME):
To write the contents of a string $writeme to a tile, you use

file_put_contents(FILENAME, Swriteme);

These functions are especially convenient when used in conjunction with PHP's
many powerful string-processing functions. For instance, let us imagine we have a
comma-delimited text file that contains information about paintings, where each
line 1n the file corresponds to a different painting:

01070, Picasso, The Actor, 1904
01080, Picasso, Family of Saltimbanques,1905

02070, Mat1sse,The Red Madras Headdress,1907
05010,0av1d, The Oath of the Horat11,1784

To read and then parse this text file 1s quite straightforward, as shown

Listing 9.20.
A4 read the fle inte memory; 1F there 15 an error then stop processing
fpaintings = file($filename) or die('ERROR: Cannot find file');

A/ our data 1s comma-delimited
$delimiter = ",";

/4 loop through each Tine of the file
foreach (Spaintings as $painting) {

A/ returns an array of strings where each element in the array
A/ corresponds te each substring between the delimiters

fFpaintingFields = explode(Sdelimiter, fSpainting):;

¥Fid= FpaintingfFields[0] ;

fartist = SpaintingFields[1] ;
Ftaitle = SpaintinglFields[Z2];
fvear = $SpaintingFields[32] ;

A do something with this data

:

LISTING 9.20 Processing a comma-delimited file

PHP Classes and Objects

Chapter 10

Section 1 of 3

OBJECT-ORIENTED OVERVIEW

Overview

Object-Oriented Overview

PHP is a full-fledged object-oriented language with many of
the syntactic constructs popularized in languages like Java and
C++.

Earlier versions of PHP do not support all of these object-
oriented features,

e PHP versions after 5.0 do

Terminology

Object-Oriented Terminology

dThe notion of programming with objects allows the developer
to think about an item with particular properties (also called
attributes or data members) and methods (functions).

dThe structure of these objects is defined by classes, which
outline the properties and methods like a blueprint.

JEach variable created from a class is called an object or
instance, and each object maintains its own set of variables, and
behaves (largely) independently from the class once created.

Relationship between Class and
Objects

Book class

Defines properties such as:
title, author, and number of pages

Objects (or instances of the
Book class)

Each instance has its own title,
author, and number of pages
property values

UML

The Unified Modelling Language

» The standard diagramming notation for object-oriented
design is UML (Unified Modeling Language).

»Class diagrams and object diagrams, in particular, are useful
to us when describing the properties, methods, and
relationships between classes and objects.

»For a complete definition of UML modeling syntax, look at
the Object Modeling Group’s living specification

UML Class diagram

By example

Every Artist has a
e first name,

* |ast name,

* Dbirth date,

* Dbirth city, and
* death date.

v'Using objects we can encapsulate those properties
together into a class definition for an Artist.

v'UML articulates that design

UML Class diagram

Class and a couple of objects

Class Objects
Class name —>» Artist $picasso : Artist

firstName: String
TastName: String
birthDate: Date
birthCity: String
deathDate: Date

+ + + + +

Accessibility

(+ indicates public) Property Data type
name

+ + + + +

firstName: Pablo

TastName: Picasso
birthDate: October 25, 1881
birthCity: Malaga
deathDate: April 8, 1973

$dali : Artist

+ + + + +

firstName: Salvador
TastName: Dali

birthDate: May 11, 1904
birthCity: Figueres
deathDate: January 23, 1989

I

Data values for each

]

Object name
(i.e., the
variable name)

property in the object (variable)

UML Class diagram

Different levels of detail

Artist

Artist Artist
firstName +f1irstName
lastName +lastName
birthDate +birthDate
birthCity +birthCity
deathDate +deathDate

ArEist Artist
firstName: String + firstName: String
TastName: String + lastName: String
birthDate: Date + birthDate: Date
birthCity: String + birthCity: String
deathDate: Date + deathDate: Date

Server and Desktop Objects

Not the same

*While desktop software can load an object into memory and
make use of it for several user interactions, a PHP object is
loaded into memory only for the life of that HTTP request.

s We must use classes differently than in the desktop world,
since the object must be recreated and loaded into memory

s*Unlike a desktop, there are potentially many thousands of
users making requests at once, so not only are objects
destroyed upon responding to each request, but memory must
be shared between many simultaneous requests, each of which
may load objects into memory or each request that requires it

Server and Desktop Objects

Not the same

Desktop application Z

Desktop memory

Application Z process

Browser application Z

Request A

Server memory

Request B

Request C

RequestA process

Request C process

Section 2 of 3

OBJECTS AND CLASSES IN PHP

Defining Classes

In PHP

The PHP syntax for defining a class uses the class keyword
followed by the class name and { } braces

class Artist {
public $fi1irstName;
public $1astName;
public $birthDate;
public $birthCity;
public $deathDate;
-

LISTING 10.1 A simple Artist class

Instantiating Objects

In PHP

Defining a class is not the same as using it. To make use of a
class, one must instantiate (create) objects from its definition
using the new keyword.

Spicasso = new Artist();

Sdali = new Artist();

Properties

The things in the objects

Once you have instances of an object, you can access and
modify the properties of each one separately using the
variable name and an arrow (->).

$picasso = new Artist();

$dali = new Artist();
$picasso->firstName = "Pablo";
$picasso->lastName = "Picasso";
$picasso->birthCity = "Malaga";
$picasso->birthDate = "October 25 1881";
$picasso->deathDate = "April 8 1973";

LISTING 10.2 Instantiating two Artist objects and setting one of those object’s properties

Constructors

A Better way to build

Constructors let you specify parameters during instantiation to
initialize the properties within a class right away.

In PHP, constructors are defined as functions (as you shall see, all
methods use the function keyword) with the name
__construct().(two underscore).

Notice that in the constructor each parameter is assigned to an
internal class variable using the Sthis-> syntax. you must always
use the Sthis syntax to reference all properties and methods
associated with this particular instance of a class.

Constructors

An Example

class Artist {
// variables from previous listing still go here

function _ _construct($firstName, $lastName, $city, $birth,
$death=null) {
$this->firstName = $firstName;
$this->TastName = $lastName;
$this->birthCity = $city;
$this->birthDate = $birth;
$this->deathDate = $death;

}

LISTING 10.3 A constructor added to the class definition

Constructors

Using the constructor

Spicasso = new Artist("Pablo","Picasso","Malaga","Oct 25,1881","Apr 8,1973");

Sdali = new Artist("Salvador","Dali","Figures","May 11 1904", "Jan 23 1989");

Methods

Functions In a class

Methods and are like functions, except they are associated with a
class.

They define the tasks each instance of a class can perform and are
useful since they associate behavior with objects.

Spicasso = new Artist(.. .)

echo Spicasso->outputAsTable();

Methods

The example definition

class Artist {

public function outputAsTable() {
$table = "<table>";

$table .= "<tr><th colspan='2">";

$table .= $this->firstName . " " . $this->lastName;
ftable .= "=/ths</tr>":

$table .= "<tr><td>Birth:</td>";

$table .= "<td>" . $this->birthDate;

$table .= "(" . $this->birthCGity . ")</td></tr>";
$table .= "<tr><td>Death:</td>";

ftable .= "=td>" . $this->deathllate . "</td></tr>’;
$table .= "</table>";

return $table;

}

LISTING 10.4 Method definition

Methods

UML class diagrams adding the method

Artist

+ firstName: String
+ lastName: String
+ birthDate: Date
+ birthCity: String
+ deathDate: Date

Artist(string,string,string,string,string)
+ outputAsTable () : String

Arkist

+ firstName: String
+ TastName: String
+ birthDate: Date
+ birthCity: String
+ deathDate: Date

__construct(string,string,string,string,string)
+ outputAsTable () : String

Visibility

Or accessibility

The visibility of a property or method determines the
accessibility of a class member and can be set to:

* Public the property or method is accessible to any code that
has a reference to the object

* Private sets a method or variable to only be accessible from
within the class

 Protected is related to inheritance...

Visibility

Or accessibility

class Painting {

» public $title; <«

» private $profit; €———
// within some PHP page
// or within some other class 5 public function doThis(Q)
$pl = new Painting(); { ’

$a = $this->profit;

§x = $pl->title; Y allowed $b = $this->title; 2L
$y = $pl->profit; X not allowed $c = $this->doSecretThat();
$pl->doThis(); Y allowed y

$pl->doSecretThat(); ¥ not allowed

» private function doSecretThat() <«

{
$a = $this->profit;
$b = $this->title;
Painting .
+ title }
- profit }
+ doThis()
- doSecretThat()

Static Members

¢ A static member is a property or method that all instances of
a class share.

**Unlike an instance property, where each object gets its own
value for that property, there is only one value for a class’s static
property.

s»Static members use the self:: syntax and are not associated
with one object

**They can be accessed without any instance of an Artist object
by using the class name, that is, via Artist::SartistCount.

Static Members

class Artist {

public static $artistCount = 0;
public $firstName;

public $lastName;

public $birthDate;

public $birthCity;

public $deathDate;

function __ _construct($firstName, $lastName, $city, $birth,
$death=null) {
$this->firstName = $firstName;
$this->1astName = $lastName;
$this->birthCity = $city;
$this->birthDate $birth;
$this->deathDate = $death;
self::%artistCount++;

}

LISTING 10.5 Class definition modified with static members

Static Members

Uml again

Class

Artist

artistCount: int <

Objects

$picasso : Artist

+

+ firstName: String
+ lastName: String
+ birthDate: Date

+ birthCity: String
+ deathDate: Date

Artist(string,string,string,string,string)
+ outputAtTable() : String

Artist::$%artistCount

+ self::%artistCount

+ firstName: Pablo

+ TlastName: Picasso

+ birthDate: October 25, 1881

+ birthCity: Malaga

+ deathDate: April 8, 1973
$dali : Artist

+ self::%artistCount

+ firstName: Salvador

+ lastName: Dali

+ birthDate: May 11, 1904

+ birthCity: Figueres

+ deathDate: January 23, 1989

Class constants

Never changes

Constant values can be stored more efficiently as class
constants so long as they are not calculated or updated

They are added to a class using the const keyword.
const EARLIEST _DATE = 'January 1, 1200;

Unlike all other variables, constants don’t use the S symbol
when declaring or using them.

Accessed both inside and outside the class using
e self::EARLIEST_DATE in the class and

e classReference::EARLIEST_DATE outside.

Section 3 of 3

OBJECT ORIENTED DESIGN

Data Encapsulation

What is it?

»Perhaps the most important advantage to object-oriented
design is the possibility of encapsulation, which generally refers
to restricting access to an object’s internal components.

» Another way of understanding encapsulation is: it is the
hiding of an object’s implementation details

» A properly encapsulated class will define an interface to the
world in the form of its public methods, and leave its data, that
is, its properties, hidden (that is, private).

Data Encapsulation

Getters and setters

If a properly encapsulated class makes its properties private,
then how do you access them?

» getters

* setters

Data Encapsulation

Getters

A getter to return a variable’s value is often very
straightforward and should not modify the property.

public function getFirstName() {

return Sthis->firstName;

Data Encapsulation

Setters

Setter methods modify properties, and allow extra logic to be added to
prevent properties from being set to strange values.

public function setBirthDate(Sbirthdate){
// set variable only if passed a valid date string

Sdate = date_create(Sbirthdate);

if (! Sdate) {
Sthis->birthDate = Sthis->getEarliestAllowedDate();
}

else {
// if very early date then change it to
// the earliest allowed date
if (Sdate < Sthis->getEarliestAllowedDate()) {
Sdate = Sthis->getEarliestAllowedDate();

}
Sthis->birthDate = Sdate;

Data Encapsulation

Artist

Artist

artistCount: int

firstName: String
TastName: String
birthDate: Date
deathDate: Date
birthCity: String

artistCount: Date
firstName: String
TastName: String
birthDate: Date
deathDate: Date
- birthCity: String

Artist(string,string,string,string,string)
outputAsTable () : String

+

+ + + 4+ + + + +

+ + + + +

getFirstName() : String
getLastName() : String
getBirthCity() : String
getDeathCity() : String
getBirthDate() : Date
getDeathDate() : Date
getEarliestAlTowedDate()
getArtistCount(): int

setLastName($1astname)
setFirstName($firstname)
setBirthCity($birthCity)
setBirthDate($deathdate)
setDeathDate($deathdate)

: Date

: void

: void
: void
: void
: void

Artist(string,string,string,string,string)
+ outputAsTable () : String
+ getEarliestAllowedDate() : Date

Data Encapsulation

Using an encapsulated class

<html>

<body>
<h2>Tester for Artist class</h2>

<?php
// first must include the class definition
include 'Artist.class.php';

// output some of its fields to test the getters

echo $picasso->getLastName() . ': ';

echo date_format($picasso->getBirthDate(),'d M Y') ''to ';

echo date_format($picasso->getDeathDate(),'d M Y') . '<hr>';

// create another instance and test it

$dali = new Artist("Salvador","Dali","Figures™,"May 11,1904",
"January 23,1989");

echo $dali->getLastName() . ': ';

echo date_format($dali->getBirthDate(),'d M Y’

echo date_format($dali->getDeathDate(),'d M Y'). '<hr>';

// test the output method

echo $picasso->outputAsTable();

// finally test the static method: notice its syntax
echo '<hr>";
echo "Number of Instantiated artists: ' . Artist::getArtistCount();

7>
</body>

</html>

LISTING 10.7 Using the encapsulated class

Inheritance

Inheritance enables you to create new PHP classes that reuse,
extend, and modify the behavior that is defined in another
PHP class.

* PHP only allows you to inherit from one class at a time

* A class that is inheriting from another class is said to be a
subclass or a derived class

 The class that is being inherited from is typically called a
superclass or a base class

A PHP class is defined as a subclass by using the extends
keyword.

class Painting extends Art{... }

Example usage

Sp = new Painting();

echo Sp->getName(); // defined in base class

echo Sp->getMedium(); // defined in subclass

Inheritance

There’s UML for that too

Art

- name
- artist
- createdYear

+ _ _toString()
+ getName ()

+ setName()
etc.

Painting

— medium

Art

+ getMedium()
+ setMedium()

T

Painting

Protected access modifier

Remember Protected?
Art
- name
- original
+ getName()
+ setName()
getOriginal ()
setOriginal() class Painting extends Art {
- init(Q -
private function foo() {
// these are allowed
7 $w = parent::getName();
$x = parent::getOriginal();
Painting v 4 2 - O

// this 1s not allowed
x $y = parent::init();

// 1n some page or other class
$p = new Painting();
$a = new Art(Q);

// neither of these references are allowed
x $w = $p->getOriginal ();
x $y = $a->getOriginal();

A More Complex Example

Using inheritance
1 -
Art Artist

- name
- artist
- yearCreated

Painting Sculpture

- medium - weight
ArtPrint

- printNumber

Extended example

All art has certain properties

/* The abstract class that
contains functionality required by
all types of Art */

abstract class Art {

private Shame;
private Sartist;

private SyearCreated;

//... constructor, getters, setters

Painting

- medium

T

ArtPrint

- printNumber

Sculpture

- weight

Extended example =

Painting require a “medium” ?
. . Painting Sculpture
class Painting extends Art {
private Smedium;

//...constructor, getters, setters
public function___toString() {

return parent::.__toString() . ", Medium: " .
Sthis->getMedium();

Extended example

Sculptures have weight

class Sculpture extends Art {
private Sweight;
//...constructor, getters, setters

public function___toString() {

Painting

ArtPrint

- printNumber

Sculpture

eight

return parent::___toString() . ", Weight: " .

Sthis->getWeight() ."kg";

Extended example

Using the classes

Spicasso = new Artist("Pablo","Picasso","Malaga","May 11,904”,"Apr 8, 1973");
Sguernica = new Painting("1937",Spicasso,"Guernica”, "Oil on canvas");
Swoman = new Sculpture("1909",Spicasso,"Head of a Woman", 30.5);

?>

<h2>Paintings</h2>

<p>Use the___toString() methods </p>

<p><?php echo Sguernica; ?></p>

<h2>Sculptures</h2>

<p> <?php echo Swoman; ?></p>

Polymorphism

No thank you, I’ll have water

» Polymorphism is the notion that an object can in fact be multiple things
at the same time.

> Consider an instance of a Painting object named Sguernica created as
follows:

Sguernica = new Painting("1937",Spicasso,"Guernica","Oil on canvas");

>The variable Sguernica is both a Painting object and an Art object due to
its inheritance.

» The advantage of polymorphism is that we can manage a list of Art
objects, and call the same overridden method on each.

Polymorphism

$picasso = new Artist("Pablo","Picasso”,"Malaga"”,"Oct 25, 1881",
"Apr 8, 1973");

// create the paintings
$guernica = new Painting("1937",$picasso, "Guernica","0il on canvas");
$chicago = new Sculpture("1967",$picasso,"Chicago"”, 454);

// create an array of art

$works = array(Q);

$works[0] = $guernica;

$works[1] = $chicago;

// to test polymorphism, loop through art array

foreach ($works as $%$art)

{

// the beauty of polymorphism:

// the appropriate __ toString() method will be called!
echo $art;

}

// add works to artist ... any type of art class will work
$picasso->addWork($Sguernica);
$picasso->addWork($chicago);
// do the same type of loop
foreach ($picasso->getWorks() as $art) {
echo $art; // again polymorphism at work

}

LISTING 10.10 Using polymorphism

Interfaces

Defining the interface

**An object interface is a way of defining a formal list of
methods that a class must implement without specifying their
implementation.

s*Interfaces are defined using the interface keyword, and look
similar to standard PHP classes, except an interface contains
no properties and its methods do not have method bodies
defined.

interface Viewable {

public function getSize();

public function getPNG();

Interfaces

Implementing the Interface

dIn PHP, a class can be said to implement an interface,
using the implements keyword:

class Painting extends Art implements Viewable { ... }

dThis means then that the class Painting must provide
implementations for the getSize() and getPNG() methods.

Interface Example

interface Viewable {
public function getSize();
public function getPNG(Q);

}

class Painting extends Art implements Viewable {

public function getPNG() {
//return image data would go here

}
public function getSize() {

//return image size would go here

LISTING 10.11 Painting class implementing an interface

Interfaces

An Extended example

Art
Painting Movie Song
\V/ \VJ
<<interface>> <<interface>>
Viewable Playable
+ getSize() + getLength()
+ getPNG() + getMedia()

Error Handling and Validation

Chapter 12

1

WHAT ARE ERRORS AND
EXCEPTIONS?

Types of Errors

* Expected errors

Things that you expect to go wrong. Bad user input, database
connection, etc...

* Warnings

problems that generate a PHP warning message but will not
halt the execution of the page

 Fatal errors

are serious in that the execution of the page will terminate
unless handled in some way

Isset() : returns true if a variable is not null.

Empty() : returns true if a variable is null, false, zero or an
empty string.

Checking user input

Checking for values Notice that this parameter has no value.

-

Example query string: 1d=0&namel=&name2=smith&name3=5%20

e

This parameter’s value is a space character (URL encoded).
isset($_CET['id']) returns true
isset($_GET['namel']) returns true !\lot!ce tha‘_c a missing va!ue for a parameter
is still considered to be isset.

isset($_GET['name2']) returns true
isset($_GET['name3']) returns true
isset($_GET['name4']) returns false Notice that only a missing parameter

name is considered to be not isset.

Notice that a value of zero is considered
empty($_CET['id']) returns true }— to be empty. This may be an issue if zero
is a “legitimate” value in the application.

empty($_CET["namel']) returns true
empty($_GET['name2']) returns false
empty($_GET[' name3' 1) PAR— fal se Notice that a value of space is

considered to be not empty.

empty($_GET['name4']) returns true

Checking user input

Checking for a number

$1d = §.GET] 3"
1T (lempty($1d) && 1s_numeric($id)) {
// use the query string since 1t exists and 1s a numeric value

LISTING 12.1 Testing a query string to see if it exists and is numeric

Exceptions vs Errors

Not the same thing

* An error is some type of problem that generates a
nonfatal warning message or that generates an error
message that terminates the program’s execution.

* An exception refers to objects that are of type Exception
and which are used in conjunction with the object-

oriented try . . . catch language construct for dealing with
runtime errors.

Section 2 of 6

PHP ERROR REPORTING

PHP error reporting

Lots of control

PHP has a flexible and customizable system for reporting warnings
and errors that can be set programmatically at runtime or
declaratively at design-time within the php.ini file. There are three
main error reporting flags:

* error_reporting
* display_errors

* |log errors

The error_reporting setting

What is an error?

The error_reporting setting specifies which type of errors are to
be reported.

It can be set programmatically inside any PHP file:
error_reporting(E_ALL);
It can also be set within the php.ini file:

error_reporting =E_ALL

The error_reporting setting

Some error reporting constants

Constant

E _ALL 8191 Report all errors and warnings

E_ERROR 1 Report all fatal runtime errors
2 Report all nonfatal runtime errors (that is,
warnings)

The display errors setting

To show or not to show

The display_error setting specifies whether error messages
should or should not be displayed in the browser.

It can be set programmatically via the ini_set() function:
ini_set('display_errors','0');
It can also be set within the php.ini file:

display_errors = Off

The log error setting

To record or not to record

The log_error setting specifies whether error messages should
or should not be sent to the server error log.

It can be set programmatically via the ini_set() function:
ini_set('log_errors','1");
It can also be set within the php.ini file:

log_errors = On

The log error setting

Where to store.

The location to store logs in can be set programatically:
ini_set('error_log', '/restricted/my-errors.log');
It can also be set within the php.ini file:

error_log = /restricted/my-errors.log

The log error setting

Error_log()

You can also programmatically send messages to the error
log at any time via the error_log() function

$fmsg = 'Some horrible error has occurred!’;

// send message to system error log (default)
error_log($msg,0);

// email message
error_log($msg,1, 'support@abc.com', 'From: somepage.php@abc.com');

// send message to file
error_log($msg,3, '/folder/somefile.log');

Section 3 of 6

PHP ERROR AND EXCEPTION
HANDLING

Procedural Error Handling

Recall connecting to a database, that there may be an error...

$connection = mysqli_connect(DBHOST, DBUSER, DBPASS, DBNAME);
$error = mysqli_connect_error();

1f ($error != null) {
// handle the error

}

LISTING 12.2 Procedural approach to error handling

OO Exception Handling

Try, catch,finally

=\When a runtime error occurs, PHP throws an exception.

*This exception can be caught and handled either by the
function, class, or page that generated the exception or by the
code that called the function or class.

="|[f an exception is not caught, then eventually the PHP
environment will handle it by terminating execution with an
“Uncaught Exception” message.

OO Exception Handling

Try, catch,finally

// Exception throwing function
function throwException($message = null,$code = null) {
throw new Exception($message, $code);

}

try {
// PHP code here
$connection = mysqli_connect(DBHOST, DBUSER, DBPASS, DBNAME)
or throwException("error");

e
}
catch (Exception $e) {
echo ' Caught exception: ' . S$e->getMessage();
echo ' On Line : ' fe->getlLine();
echo ' Stack Trace: '; print_r($e->getTrace());
} finally {

// PHP code here that will be executed after try or after catch

LISTING 12.3 Example of try . . . catch block

OO Exception Handling

Finally

»The finally block is optional. Any code within it will
always be executed after the code in the try or in the catch
blocks, even if that code contains a return statement.

s The finally block is only available in PHP 5.5 and later

Throw your own exception

Object oriented way of dealing with the unexpected

try {
// PHP code here

}
catch (Exception $e) {

// do some application-specific exception handling here

// now rethrow exception
throw §e:

}

LISTING 12.5 Rethrowing an exception

Custom Handlers

Error and Exception Handlers

It is possible to define your own handler for uncaught errors and
exceptions, the mechanism for doing so varies depending upon
whether you are using the procedural or object oriented
mechanism for responding to errors.

*If using the procedural approach(i.e, not using try...catch) you
can define a custom error handling function and then register it
with

set_error_handler()

*If you are using the object oriented exception approach with
try... catch blocks, you can define a custom exception handling
function and then register it with

set_exception_handler()

Custom Handlers

Error and Exception Handlers

v'"What should a custom error or exception handler do?

v'It should provide the developer with detailed information
about the state of the application when the exception
occurred, information about the exception, and when it
happened.

VIt should hide any of those details from the regular end user,
and instead provide the user with a generic message such as
“Sorry but there was a problem”

v'Once a handler function is defined, it must be registered,
using the following code:

set_exception_handler('my_exception _handler');

Custom Handlers

function my_exception_handler($exception) {

// put together a detailed exception message

$msg = "<p>Exception Number " . $exception->getCode();
$msg .= $exception->getMessage() . " occurred on Tine ";
§msg .= "" . $exception->getLine() . "",

§msg .= "and in the file: ";
$msg .= "" . $exception->getFile() . " </p>";

// email error message to someone who cares about such things
error_log($msg, 1, 'support@domain.com',
"From: reporting@domain.com');

// 1f exception serious then stop execution and tell maintenance fib
it ($exception->getCode() !== E_NOTICE) {
die("Sorry the system is down for maintenance. Please try
again soon");
}
}

LISTING 12.6 Custom exception handler

END
OF
MODULE 4

