
Advanced Computer Architecture
HWANG, CHAPTER 7

MULTIPROCESSORS AND MULTICOMPUTERS

7.1 MULTIPROCESSOR SYSTEM INTERCONNECTS

Multiprocessors Vs Multicomputers
The main difference between multiprocessor and multicomputer is that
the multiprocessor is a system with two or more CPUs that is capable
of performing multiple tasks at the same time while a multicomputer
is a system with multiple processors that are connected via an
interconnection network to perform a computation task.

Parallel processing demands the use of efficient system interconnects
for fast communication among multiple processors and shared memory,
I/O and peripheral devices.

Generalized Multiprocessor System

Generalized Multiprocessor System
Each processor Pi is attached to its own local memory and
private cache.

Multiple processors connected to shared memory through
interprocessor memory network (IPMN).

Processors share access to I/O and peripherals through
processor-I/O network (PION).

Both IPMN and PION are necessary in a shared-resource
multiprocessor.

An optional interprocessor communication network (IPCN)
can permit processor communication without using shared
memory.

Interconnection Network
Characteristics
Timing Protocol
◦ Synchronous – controlled by a global clock
◦ Asynchronous – use handshaking or interlock mechanisms

Switching Method
◦ Circuit switching – a pair of communicating devices control the path

for the entire duration of data transfer
◦ Packet switching – large data transfers broken into smaller pieces,

each of which can compete for use of the path

Network Control
◦ Centralized – global controller receives and acts on requests
◦ Distributed – requests handled by local devices independently

7.1.1 Hierarchical Bus Systems
A bus system is a hierarchy of buses connection various system
and subsystem components.

Each bus has a complement of control, signal, and power lines.

There is usually a variety of buses in a system:
◦ Local bus – (usually integral to a system board) connects various major

system components (chips)
◦ Memory bus – used within a memory board to connect the interface, the

controller, and the memory cells
◦ Data bus – might be used on an I/O board or VLSI chip to connect various

components
◦ Backplane – like a local bus, but with connectors to which other boards

can be attached

Hierarchical Buses and caches
There are numerous ways in which buses, processors, memories, and
I/O devices can be organized.

One organization has processors (and their caches) as leaf nodes in a
tree, with the buses (and caches) to which these processors connect
forming the interior nodes.

This generic organization, with appropriate protocols to ensure cache
coherency, can model most hierarchical bus organizations.

Bridges
The term bridge is used to denote a device that is used to connect two
(or possibly more) buses.

The interconnected buses may use the same standards, or they may be
different (e.g. PCI and ISA buses in a modern PC).

Bridge functions include
◦ Communication protocol conversion
◦ Interrupt handling
◦ Serving as cache and memory agents

7.1.2 Crossbar Switch and Multiport
Memory

Network stages
Single stage networks are sometimes called recirculating networks
because data items may have to pass through the single stage many
times.

◦ The crossbar switch and the multiported memory organization (seen later)
are both single-stage networks.

This is because even if two processors attempted to access the same
memory module (or I/O device at the same time, only one of the
requests is serviced at a time.

Multistage networks consist of multiple stages of switch boxes, and
should be able to connect any input to any output.

Blocking vs nonblocking
networks
A multistage network is called blocking if the simultaneous connections
of some multiple input-output pairs may result in conflicts in the use of
switches or communication links.

A nonblocking multistage network can perform all possible connections
between inputs and outputs by rearranging its connections.

Crossbar Networks
Crossbar networks connect every input to every output through a
crosspoint switch.

A crossbar network is a single stage, non-blocking permutation network.

In an n-processor, m-memory system, n m crosspoint switches will be
required.

Each crosspoint is a unary switch which can be open or closed, providing
a point-to-point connection path between the processor and a memory
module.

Crosspoint Switch Design
Out of n crosspoint switches in each column of an n m
crossbar mesh, only one can be connected at a time.

Crosspoint switches must be designed to handle the
potential contention for each memory module.

Each processor provides a request line, a read/write line, a
set of address lines, and a set of data lines to a crosspoint
switch for a single column.

The crosspoint switch eventually responds with an
acknowledgement when the access has been completed.

Schematic of a Crosspoint
Switch

Multiport Memory
Since crossbar switches are expensive, and not suitable for systems with many
processors or memory modules, multiport memory modules may be used instead.

A multiport memory module has multiple connections points for processors (or I/O
devices), and the memory controller in the module handles the arbitration and
switching that might otherwise have been accomplished by a crosspoint switch.

Multiport Memory Examples

7.1.3 Omega Networks
N-input Omega networks, in general, have log2n stages, with the input
stage labeled 0.

The interstage connection (ISC) pattern is a perfect shuffle.

Routing is controlled by inspecting the destination address. When the i-
th highest order bit is 0, the 22 switch in stage i connects the input to
the upper output. Otherwise it connects the input to the lower output.

How to read the figure:
•Pick a number at the left (e.g., 4 = 100)
•Rotate left: 100 ---> 001 (= 1)
•Connect 4 to 1
You have to do this in every stage
no.stages depends on i/p o/p bits

Omega Network without
Blocking

Consider the routing message from input 001 to output 011.

Involves switches A,B and C.

compare MSB bit

(001 to 011): straight, cross, straight

(101 to 101): A, E, D straight

Blocking Effects
Blocking exists in an Omega network when the requested
permutation would require that a single switch be set in
two positions simultaneously.

Obviously this is impossible, and requires that one of the
permutation requests be blocked and tried in a later pass.

In general, with 22 switches, an Omega network can
implement n n/2 permutations in a single pass. For n = 8,
this is about 10% of all possible permutations.

In general, a maximum of log2n passes are needed for an n-
input Omega network.

Omega Network with Blocking

Conflicts at F by 000->110 and 100->111
Conflicts at G by 011->000 and 111->011

Omega Broadcast
An Omega network can be used to broadcast data to multiple
destinations.

The switch to which the input is connected is set to the broadcast
position (input connected to both outputs).

Each additional switch (in later stages) to which an output is directed is
also set to the broadcast position.

Omega Broadcast

Larger Switches
Larger switches (more inputs and outputs, and more switching patterns)
can be used to build an Omega network, resulting in fewer stages.

For example, with 44 switches, only log416 stages are required for a
16-input switch.

A k-way perfect shuffle is used as the ISC for an Omega network using k
 k switches.

Omega Network with 44 Switches

Butterfly Networks
Butterfly networks are built using crossbar switches instead of those
found in Omega networks.

There are no broadcast connections in a butterfly network, making
them a restricted subclass of the Omega networks.

Hot Spots
When a particular memory module is being heavily accessed by
multiple processors at the same time, we say a hot spot exists.

For example, if multiple processors are accessing the same memory
location with a spin lock implemented with a test and set instruction,
then a hot spot may exist.

Obviously, hot spots may significantly degrade the network
performance.

Dealing With Hot Spots
To avoid the hot spot problems, we may develop special operations that
are actually implemented partially by the network.

Consider the instruction Fetch&Add(x,e), which has the following
definition (x is a memory location, and the returned value is stored in a
processor register and e integer increment):

Fetch&Add(x,e)

{temp x
x x + e
return temp}

Implementing Fetch&Add
When n processors attempt to execute Fetch&Add on the same location
simultaneously, the network performs a serialization on the requests,
performing the following steps atomically.

◦ x is returned to one processor, x+e1 to the next, x+e1+e2, to the next, and so
forth.

◦ The value x+e1+e2+…+en is stored in x.

Note that multiple simultaneous test and set instructions could be
handled in a similar manner.

The Cost of Fetch&Add
Clearly a feature like Fetch&Add is not available at no cost.

Each switch in the network must be built to detect the Fetch&Add
requests (distinct from other requests), queuing them until the
operation can be atomically completed.

Additional switch cycles may be required, increasing network latency
significantly.

7.2 CACHE COHERENCE & SYNCHRONIZATION

The Cache Coherence Problem
In a multiprocessor system, data inconsistency may occur among adjacent levels
or within the same level of the memory hierarchy. For example, the cache and the
main memory may have inconsistent copies of the same object.

As multiple processors operate in parallel, and independently multiple caches may
possess different copies of the same memory block, this creates cache coherence
problem.

Cache coherence schemes help to avoid this problem by maintaining a uniform
state for each cached block of data.

Let X be an element of shared data which has been referenced by two processors,
P1 and P2. In the beginning, three copies of X are consistent.

If the processor P1 writes a new data X1 into the cache, by using write-through
policy, the same copy will be written immediately into the shared memory. In this
case, inconsistency occurs between cache memory and the main memory.

When a write-back policy is used, the main memory will be updated when the
modified data in the cache is replaced or invalidated.

Causes of Cache Inconsistency
In general, there are three sources of inconsistency problem −

◦ Sharing of writable data
◦ Process migration
◦ I/O activity

Inconsistency After Process Migration
If a process accesses variable X (resulting in it being placed in the
processor cache), and is then moved to a different processor and
modifies X (to X1), then the caches on the two processors are
inconsistent.

This problem exists regardless of whether write-through caches or
write-back caches are used.

Inconsistency after Process Migration

Inconsistency Caused by I/O
Data movement from an I/O device to a shared primary memory
usually does not cause cached copies of data to be updated.

As a result, an input operation that writes X causes it to become
inconsistent with a cached value of X.

Likewise, writing data to an I/O device usually use the data in the
shared primary memory, ignoring any potential cached data with
different values.

A potential solution to this problem is to require the I/O
processors to maintain consistency with at least one of the
processor’s private caches, thus “passing the buck” to the
processor cache coherence solution (which will we see).

I/O Operations Bypassing the Cache

A Possible Solution

Cache Coherence Protocols
When a bus is used to connect processors and memories in
a multiprocessor system, each cache controller can “snoop”
on all bus transactions, whether they involve the current
processor or not. If a bus transaction affects the
consistency of a locally-cached object, then the local copy
can be invalidated.

If a bus is not used (e.g. a crossbar switch or network is
used), then there is no convenient way to “snoop” on
memory transactions. In these systems, some variant of a
directory scheme is used to insure cache coherence.

7.2.2 Snoopy Bus Protocols
Two basic approaches

◦ write-invalidate – invalidate all other cached copies of a data object when
the local cached copy is modified (invalidated items are sometimes called
“dirty”)

◦ write-update – broadcast a modified value of a data object to all other
caches at the time of modification

Snoopy bus protocols achieve consistency among caches and shared
primary memory by requiring the bus interfaces of processors to watch
the bus for indications that require updating or invalidating locally
cached objects.

Initial State – Consistent
Caches

After Write-Invalidate by P1

After Write-Update by P1

Operations on Cached Objects
Read – as long as an object has not been invalidated, read operations
are permitted, and obviously do not change the object’s state

Write – as long as an object has not been invalidated, write operations
on the local object are permitted, but trigger the appropriate protocol
action(s).

Replace –the cache block containing an object is replaced (by a different
block)

Write-Through Cache
In the transition diagram (next slide), the two possible object
states in the “local” cache (valid and invalid) are shown.

The operations that may be performed are read, write, and
replace by the local processor or a remote processor.

Transitions from locally valid to locally invalid occur as a result of
a remote processor write or a local processor replacing the cache
block.

Transitions from locally invalid to locally valid occur as a result of
the local processor reading or writing the object (necessitating, of
course, the fetch of a consistent copy from shared memory).

Write-Through Cache State Transitions

R = Read, W = Write, Z = Replace
i = local processor, j = other processor

Write-Back Cache
The state diagram for the write-back protocol divides the
valid state into RW and RO states.

The protocol essentially gives “ownership” of the cache
block containing the object to a processor when it does a
write operation.

Before an object can be modified, ownership for exclusive
access must first be obtained by a read-only bus transaction
which is broadcast to all caches and memory.

If a modified block copy exists in a remote cache, memory
must first be updated, the copy invalidated, and ownership
transferred to the requesting cache.

Write-Back Cache

Goodman’s Cache Coherence Protocol
Combines advantages of write-back and write-through
protocols.

First write of a cache block uses write-through.

Cache states (see previous slide):
◦ Valid: block is consistent with memory, has been read, but not

modified.
◦ Invalid: block not in cache, or is inconsistent with memory.
◦ Reserved: block written once after being read and is consistent with

memory copy (which is the only other copy).
◦ Dirty: block modified more than once, inconsistent with all other

copies.

Goodman’s Write-Once
Protocol State Diagram

Commands and State Transitions
Local processor accesses:
◦ Read-hit or read-miss (P-Read) – transition to valid state.
◦ Write-hit (P-Write)

◦ First one results in transition to reserved state.
◦ Additional writes go to (or stay in) dirty state.

◦ Write-miss – transition to dirty state.

Remote processor invalidation commands (issued over
snoopy bus):
◦ Read-invalidate – read a block and invalidate all other copies.
◦ Write-invalidate – invalidate all other copies of a block.
◦ Bus-read (Read-blk) – normal read; transition to valid state.

Cache events and actions
Read miss

Write miss

Read hit

Write hit

Block replacement

Snoopy Bus Protocol
Performance

Depends heavily on the workload.

Goal
◦ Reduce bus traffic and effective memory access time

In uniprocessors:
◦ bus traffic and memory-access time heavily influenced by cache misses.
◦ Miss ratio increases as block size increases, up to a data pollution point (that is, as blocks

become larger, the probability of finding a desired data item in the cache increases).
◦ Data pollution point increases with larger cache sizes.

Snoopy Bus Protocol Performance
In multiprocessor systems

◦ Write-invalidate protocol
◦ Better handles process migrations and synchronization than other protocols.
◦ Cache misses can result from invalidations sent by other processors before a cache access, which

significantly increases bus traffic.
◦ Bus traffic may increase as block sizes increase.
◦ Write-invalidate facilities writing synchronization primitives.
◦ Average number of invalidated cache copies is small in a small multiprocessor.

◦ Write-update procotol
◦ Requires bus broadcast facility
◦ May update remote cached data that is never accessed again
◦ Can avoid the back and forth effect of the write-invalidate protocol for data shared among

multiple caches
◦ Can’t be used with long write bursts
◦ Requires extensive tracing to identify actual behavior

7.2.3 Directory-based
Protocols
The snoopy bus-based protocols may be adequate for relatively small
multiprocessor systems, but are wholly inadequate for large
multiprocessor systems.

Commands (in the form of messages) to control the consistency of
remote caches must be sent only to those processors with caches
containing a copy of the affected block (since broadcast is very
expensive in a multistage network – like Omega).

This gives rise to directory-based protocols.

Directory Structures
Cache directories store information on where (in which
processors) copies of cache blocks reside.

Central directory approaches (with copies of all cache
directories) is very large, and requires an associative search
(like the individual cache directories).

Distributed directory approaches maintains separate
director which records state and presence information for
each memory block.

Types of Directory Protocols
Directory entries are pairs identifying cache blocks and processor
caches holding those blocks.

Three different types of directory protocols:
◦ Full-map directories – each directory entry can identify all processors with

cached copies of data; with N processors, each directory entry must have N
processor ID identifiers.

◦ Limited directories – each entry has a fixed number of processor identifiers,
regardless of the system size.

◦ Chained directories – emulate full-map directories by distributing entries
among the caches.

Full-map Protocols
Directory entries have one bit per processor in the system, and
another bit to indicate if the data has been modified (“dirty”).

If the dirty bit is set, then only one processor must be identified
in the bit map; only that processor is allowed to write the block
into memory.

Cache maintains two bits of state information per block:
◦ Is the cached block valid?
◦ Can a valid cached block be written to memory?

The purpose of the cache coherence protocol is to keep the
cache’s state bits and those in the memory directory consistent.

Three States of a Full-Map Directory

Full Map State Changes
In the first state (upper left in previous slide), X is missing from all
caches.

In the second state, three caches are requesting copies of X. The bits of
the three processors are set, and the dirty bit is still ‘C’ (clean), since no
processor has requested to write X.

In the third state, the dirty bit is set (‘D’), since a processor requested
to write X. Only the corresponding processor has it’s bit set in the map.

Write Actions
Cache C3 detects the block is valid, but the processor doesn’t
have write permission.

Write request issued to memory, stalling the processor.

Other caches receive invalidate requests and send
acknowledgements to memory.

Memory receives acknowledgements, sets dirty bit, clears
pointers to other processors, sends write permission to C3.

◦ By waiting for acknowledgements, the memory ensures sequential
consistency.

C3 gets write permission, updates cache state, and reactivates
the processor.

Full-Map Protocol Benefits
The full-map protocol provides an upper bound on the performance of
centralized directory-based cache coherence.

It is not scalable, however, because of the excessive memory overhead
it incurs.

Limited Directories
Designed to solve the directory size problem.

Restricts the number of cached copies of a datum, thus limiting
the growth of the directory.

Agrawal notation: Diri X
◦ i indicates number of pointers in directory
◦ X is NB for no broadcast, B for broadcast
◦ E.g. full map with N processors is DirN NB

In the example (next slide), the left figure shows C1 and C2
holding copies of X. When C3 requests a copy, the C1 or C2 copy
must be invalidated using a process called “eviction,” as shown by
the right figure.

Eviction in a Limited Directory

Limited Directory Memory Size
In the full-map protocol, it is sufficient to use a single bit to identify if
each of the N processors has a copy of the datum.

In a limited directory scheme, processor numbers must be maintained,
requiring log2 N bits each.

If the code being executed on a multiprocessor system exhibits
“processor locality,” then a limited directory is sufficient to capture the
identity of the processors.

Limited Directory Scalability
Limited directory schemes for cache coherency in non-bus systems are
scalable, in that the number of resources required for their
implementation grows linearly as the number of processors grows.

Diri B protocols exist that allow more than i copies of a block to exist in
caches, but must use broadcast to invalidate more than i copies of a
block (because of a write request). Without a broadcast capability in
the connection network, ensuring sequential consistency is difficult.

Chained Directories
Chained directories are scalable (like limited directories).

They keep track of shared copies of data using a chain of
directory pointers.

Each cache must include a pointer (which can be the chain
termination pointer) to the next cache that contains a
datum.

When a processor requests a read, it is sent the datum
along with a pointer to the previous head of the list (or a
chain termination pointer if it is the only processor
requesting the datum).

A Chained Directory Example

Invalidation in Chained Directories
When a processor requests to write a datum, the processor at the head
of the list is sent an invalidate request.

Processors pass the invalidate request along until it reaches the
processor at the end of the list.

That processor sends an acknowledgement to the memory, which then
grants write access to the processor requesting such.

Author suggests this be called the “gossip” protocol.

Complications with Chained
Dirs
Suppose processor i requests Y, and the (direct-mapped) cache
already contains an entry X which maps to the same location as Y.
It must evict X from its cache, thus requiring the list of X’s users to
be altered.

Two schemes for the list alteration:
◦ Send a message “down the list” to cache i-1 with a pointer to cache i+1,

removing i from the list.
◦ Invalidate X in caches i+1 through N.

Alternately, a doubly-linked list could be used, with the expected
implications for size, speed, and protocol complexity.

Chained directories are scalable, and cache sizes (not number of
processors) control the number of pointers.

Alternative Coherency
Schemes
Shared caches – allow groups of processors to share caches.
Within the group, the coherency problem disappears. Many
configurations are possible.

Identify noncacheable data – have the software mark data
(using hardware tags) that can be shared (e.g. not
instructions or private data), and disallow caching of these.

Flush caches at synchronization – force a rewrite of cached
data each time synchronization, I/O, or process migration
might affect any of the cached data. Usually this is slow.

Hardware Synchronization Methods
Test and set – TS instruction atomically writes 1 to a memory location
and returns its previous value (0 if the controlled resource is free). All
processors attempting TS on same location except one will get 1, with
one processor getting zero. The “spin lock” is cleared by writing 0 to the
location.

Suspend lock – a lock is designed to generate an interrupt when it is
released (opened). A process wanting the lock (but finding it closed)
will disable disable all interrupts except that associated with the lock
and wait.

Wired Barrier Synchronization
Barriers are used to block a set of processes until each reaches the
same code point.

This scheme uses a wire which is “1” unless one of the processors sets
its X bit, which forces the wire to “0”. The X bit is set when a process
has not yet reached the barrier.

As each process reaches the barrier, it clears its X bit and waits for the Y
bit to become “1”; the Y bit reports the state of the wire.

Wired Barrier Implementation

Wired Barrier Example
fork

X1 1 X2 1

work work

X1 0 X2 0

Y1 = 1? Y2 = 1?

No No

Yes Yes

7.3 THREE GENERATIONS OF MULTICOMPUTERS

Design Choices in the Past
Processors

◦ Low cost commodity (off-the-shelf) processors

Memory Structure
◦ Distributed memory organization
◦ Local memory with each processor

Interconnection Schemes
◦ Message passing, point-to-point , direct networks with send/receive semantics

with/without uniform message communication speed

Control Strategy
◦ Asynchronous MIMD, MPMD and SPMD operations

The Past, Present and Future
Development

First Generation
◦ Example Systems: Caltech’s Cosmic Cube, Intel iPSC/1, Ametek S/14,

nCube/10

Second Generation
◦ Example Systems: iPSC/2, i860, Delta, nCube/2, Supernode 1000, Ametek

Series 2010

Third Generation
◦ Example Systems: Caltech’s Mosaic C, J-Machine, Intel Paragon

First and second generation multi-computers are regarded as medium-
grain systems

Third generation multi-computers were regarded as fine-grain systems.

Fine-grain and shared memory approach can, in theory, combine the
relative merits of multiprocessors and multi-computers in a
heterogeneous processing environment

The Intel Paragon System
Previously, homogeneous nodes were used to make hypercube
multicomputers, as all the functions were given to the host. So, this
limited the I/O bandwidth. Thus to solve large-scale problems efficiently
or with high throughput, these computers could not be used.

The Intel Paragon System was designed to overcome this difficulty. It
turned the multicomputer into an application server with multiuser
access in a network environment.

In late 1992, intel shipped a commercial version of the DELTA, called Paragon. The
Paragon uses the same rectangular grid structure as the DELTA, but faster
processing nodes.

The Paragon node contains two identical Intel i860XP processors, an improved
50MHz version of the i860 used in previous Intel systems.

This processor has peak rates of 75flops (64-bit) and 42MIPS and can support from
16-128 Mbytes with a 400 Mbytes/sec processor-memory bandwidth and an 800
Mbytes/sec processor-cache bandwidth.

Paragon nodes are organized into three partitions: The Compute
partition, the Service Partition and the I/O partition.

7.4 MESSAGE PASSING MECHANISMS

Message Passing in Multicomputers
Multicomputers have no shared memory, and each “computer” consists
of a single processor, cache, private memory, and I/O devices.

Some “network” must be provided to allow the multiple computers to
communicate.

The communication between computers in a multicomputer is called
“message passing.”

Message Formats
Messages may be fixed or variable length.

Messages are comprised of one or more packets.

Packets are the basic units containing a destination address (e.g.
processor number) for routing purposes.

Different packets may arrive at the destination asynchronously, so they
are sequence numbered to allow reassembly.

Flits (flow control digits) are used in wormhole routing; they’re
discussed a bit later

Store and Forward Routing
Packets are the basic unit in the store and forward scheme.

An intermediate node must receive a complete packet before it can be
forwarded to the next node or the final destination, and only then if the
output channel is free and the next node has available buffer space for
the packet.

The latency in store and format networks is directly related to the
number of intermediate nodes through which the packet must pass.

Flits and Wormhole Routing
Wormhole routing divides a packet into smaller fixed-sized pieces called
flits (flow control digits).

The first flit in the packet must contain (at least) the destination
address. Thus the size of a flit must be at least log2 N in an N-processor
multicomputer.

Each flit is transmitted as a separate entity, but all flits belonging to a
single packet must be transmitted in sequence, one immediately after
the other, in a pipeline through intermediate routers.

Store and Forward vs.
Wormhole

Asynchronous Pipelining
Each intermediate node in a wormhole network, and the
source and destination, each have a buffer capable of
storing a flit.

Adjacent nodes communicate requests and
acknowledgements using a one-bit ready/request (R/A) line.
◦ When a receiver is ready, it pulls the R/A line low.
◦ When the sender is ready, it raises the R/A line high and transmits

the next flit; the line is left high.
◦ After the receiver deals with the flit (perhaps sending it on to

another node), it lowers the R/A line to indicate it is ready to accept
another flit.

◦ The cycle repeats for transmission of other flits.

Wormhole Node Handshaking

Asynchronous Pipeline Speeds
An asynchronous pipeline can be very efficient, and use a clock speed
higher than that used in a synchronous pipeline.

The pipeline can be stalled if buffers or successive channels in the path
are not available during certain cycles.

A packet could be “buffered, blocked, dragged, detoured” – and just
knocked around, in general – if the pipeline stalls.

Latency
Assume

◦ D = # of intermediate nodes (routers) between the source and
destination

◦ L = packet length (in bits)
◦ F = flit length (in bits)
◦ W = the channel bandwidth (in bits/sec)

Ignoring network startup time, propagation and resource delays:
◦ store and forward latency is L/W (D+1), and
◦ wormhole latency is L/W + F/W D.

F is usually much smaller than L, and thus D has no significant
effect on latency in wormhole systems.

7.4.2 Virtual Channels
The channels between nodes in a wormhole-routed multicomputer are
shared by many possible source and destination pairs.

A “virtual channel” is a pair of flit buffers (in nodes) connected by a
shared physical channel.

The physical channel is “time shared” by all the virtual channels.

Other resources (including the R/A line) must be replicated for each of
the virtual channels.

Virtual Channel Example

Deadlock
Deadlock can occur if it is impossible for any messages to move
(without discarding one).

◦ Buffer deadlock occurs when all buffers are full in a store and forward
network. This leads to a circular wait condition, each node waiting for space
to receive the next message.

◦ Channel deadlock is similar, but will result if all channels around a circular
path in a wormhole-based network are busy (recall that each “node” has a
single buffer used for both input and output).

Buffer Deadlock in a Store and
Forward Network

Channel Deadlock with
Wormhole Routing

Deadlock Avoidance

7.4.3 Flow Control
If multiple packets/flits demand the same resources at a given node,
then there must be some policy indicating how the conflict is to be
resolved.

These policies then determine what mechanisms can be used to deal
with congestion and deadlock.

Packet Collision Resolution
Consider the case of two flits both wanting to use the same channel or
the same receive buffer at the same time.

How is the “collision” resolved? Who gets the resource? What happens
to the other flit?

Virtual Cut-Through Routing
Solution: temporarily store one of the packets in a different buffer.

Positive:
◦ No messages lost
◦ Should perform as well as wormhole with no conflicts

Negative:
◦ Potentially large buffer required (with potentially large delays).
◦ Not suitable for routers.
◦ Cycles must be avoided

Blocking
Solution: prevent one of the messages from advancing while the other
uses the buffer/channel.

Positive:
◦ Messages are not lost.

Negative
◦ Node sending blocked packet is idled.

Discarding
Solution: drop one of the messages in contention for the
buffer/channel.

Positive:
◦ Simple to implement

Negative:
◦ Loses messages, resulting in a severe waste of resources.

Detour
Solution: send the conflicting message somewhere (anywhere) else.

Positive:
◦ Simple to implement

Negative:
◦ May waste more channel resource than necessary
◦ May cause other resources to be idled
◦ May cause livelock (e.g. four dining philosophers, with two seated across

from each other conspiring to starve the other two).

Collision Resolution
Techniques

Routing
Deterministic routing: the path from source to destination is
determined uniquely from the source and destination addresses.

Adaptive routing: the path may depend on network conditions.

Deterministic Routing Using
Dimension Ordering

Dimension ordering algorithms are based on the selection of a
sequence of channels following a specified order.

For example, routing in a two-dimensional mesh is called X-Y routing,
because the X-dimension routing path is decided before choosing the Y-
dimension path.

In hypercubes, the example algorithm is called E-cube routing, and
again specifies the sequence of channels to be used.

E-cube Routing on a
Hypercube
Assume the system has N = 2n nodes; the dimensions of the
hypercube are numbered 1, 2, …, n.

Each node has a binary address with n bits (numbered n-1 to 0).
The ith bit in a node address corresponds to the ith dimension.

Source address = s, destination address = d.

Algorithm:
◦ Compute direction bit ri = si-1 xor di-1 for all dimensions. Now set i = 1

and v = s.
◦ Route from the current node v to the next node v xor 2i-1 if ri = 1; skip this

step if ri = 0.
◦ Move to dimension i + 1 (i.e. i i + 1). If i <= n, go to the previous step.

E-cube Routing Example

E-Cube Routing Example
(Detail)
Source Address s = 0110, n = 4 (dimension of cube)

Destination Address d = 1101

“Direction Bits” r = 0110 xor 1101 = 1011

Route from 0110 to 0111 because r = 1011

Route from 0111 to 0101 because r = 1011

Skip dimension 3 because r = 1011

Route from 0101 to 1101 because r = 1011

X-Y Routing on a 2-D Mesh
X-Y routing is similar, in concept, to E-cube routing in that the route
from the source to the destination is determined completely from their
addresses.

In X-Y routing, the message travels “horizontally” (in the X-dimension)
from the source node to the “column” containing the destination,
where the message travels vertically.

There are four possible direction pairs, east-north, east-south, west-
north, and west-south.

X-Y Routing Example

Dimension Ordering Characteristics
In general, X-Y routing can be expanded to an n-dimensional mesh.

Both X-Y routing and E-cube routing can be shown to be deadlock free.
(Hint: compare with Havender’s “Standard Allocation Pattern” for
resource use in an OS.)

Both techniques can be used with store-and-forward or wormhole
routing networks to produce minimal routes.

Dimension ordering does not work on a torus.

Adaptive Routing
The main purpose of adaptive routing is to avoid deadlock.

Adaptive routing makes use of virtual channels between
nodes to make routing more economical and feasible to
implement.

Virtual channels allow the network to exhibit different
characteristics at different times (that is, it “adapts”).

For example, (c) and (d) on the next slide are adaptive
configurations of (a), but they prevent deadlock from
occurring, since they allow only west-{north/south} routing
(in c), or east-{north/south} routing (in d).

Adaptive Use of Virtual
Channels to Avoid Deadlock

Communication Patterns
Four possible patterns

◦ Unicast – traditional one to one communication
◦ Multicast – one to many communication, with one message sent to multiple

destinations
◦ Broadcast – one to all communication, with one message sent to every

possible destination
◦ Conference – many to many communication

Note that each of these can be implemented using simple sequential
transmission of messages (unicast).

Efficiency Parameters
Two common efficiency parameters are:

◦ channel traffic – the number of channels used at any time instant to
deliver messages

◦ communication latency – the longest time required for any packet to
reach its destination

An optimal network would minimize both of these parameters for
the communication patterns it uses.
However, these efficiency parameters are interrelated, and
achieving minimums in each may not be possible.
Latency is more important than traffic in a store-and-forward
network.
Traffic demand is more important than latency in a wormhole-
routed network.

Example 5-Destination Multicast
(a) Five unicasts, with traffic demand = 13 and latency = 4 (assuming
one “hop” per unit time).

(b) Tree multicast with branching at multiple levels, with traffic demand
= 7 and latency = 4.

(c) Tree multicast with only one branching node, with traffic demand = 6
and latency = 5.

(d) Broadcast to all nodes with spanning tree.

Multicast & Broadcast Patterns

Hypercube
Multicast/Broadcast
Broadcast on a hypercube of dimension n will have a latency
not exceeding n.

A greedy algorithm for building a tree selects, at each node,
the nodes in dimensions that will reach the largest number
of remaining destinations (e.g. find the minimm cover set).

In the event of a tie, any of the tied dimensions can be
selected (which means the resulting tree is not necessarily
unique).

Note that all communication channels at each level of the
multicast/broadcast tree must be ready at the same time,
or else additional buffering might be required.

Broadcast on Hypercube

Multicast on Hypercube –
greedy algorithm

1st level channel:
0101->0111 & 0101->1101
2nd level channel:
1101->1111, 1101->1100 &
0111->0110
3rd level channel:
1111->1110, 1111->1011,
1100->1000 & 0110->0010
4th level channel:
1110->1010

Sending packet through the
dimensions

Virtual Networks
With multiple virtual channels between nodes, it is possible to
dynamically reconfigure a network into one of perhaps many different
“virtual networks.”

The advantages of having many such virtual networks are
◦ routing needs can be used to tailor networks that yield results with simple

and efficient routing algorithms
◦ deadlock can be completely eliminated (e.g. by not allowing cycles to exist in

the virtual network)

Of course, adding channels to the network will increase the cost

Network Partitioning
Another benefit of having virtual channels between nodes is the ability
to dynamically partition a network into multiple subnetworks for
multicast communication.

Each subnet can carry a different multicast message at the same time.

Parallel Processors

Session 10

Multivector and SIMD Computers

Vector Processing Principles

• Vector:
– A set of scalar data items

– All of the same type

– Stored in memory

• Stride:
– Address increments between successive elements of a vector

• Vector Processor:
– Hardware resources to perform vector operations:

• Vector registers

• Functional pipelines

• Processing elements

• Register counters

• Vector Processing:
– Arithmetic or logic operations on vectors

• Vectorization:
– Conversion from scalar code to vector code

Performance

• Vector processing:
– Faster

– More efficient

– Reduced software overhead
• Loop control

• Memory access

– Matches with pipelining mechanism

• Speedup:
– Vectorization ratio

– Speed ration between vector and scalar operations

• Costs:
– Hardware costs

– Compiler (vectorizing compiler or vectorizer)

– Programming skills

Vector Instruction Types

• Vector-Vector Instructions

• Vector-Scalar Instructions

• Vector-Memory Instructions

• Vector Reduction Instructions

• Gather and Scatter Instructions

• Masking Instructions

Vector-Vector Instructions

• Vi Vj

• Vj x Vk Vi

• Examples:

V1 = sin (V2)

V3 = V1 + V2

Vector-Scalar Instructions

s x Vi Vj

Vector-Memory Instructions

• Vector load:
– M Vi

• Vector store:
– Vi M

Vector Reduction Instructions

• Mappings:

– Vi Sj

– Vi x Vj Sk

• Examples:

– maximum of all elements

– minimum of all elements

– sum of all elements

– mean value of all elements

– dot product:

• s = S ai x bi for A = (ai) and B = (bi)

Gather and Scatter Instructions

• Gather:
– M V1 x V0

– V1 contains the data and V0 is used as an
index

– Fetches from memory the nonzero elements
of a sparse vector using indices that
themselves are indexed

• Scatter:
– V1 x V0 M

– V1 contains the data and V0 is used as an
index

– Stores a vector into memory in a sparse vector
whose nonzero entries are indexed

Gather

• Gather:
– M V1 x V0

– V1 contains the data and V0 is used as an index

– Fetches from memory the nonzero elements of a sparse vector using
indices that themselves are indexed

Scatter

• Scatter:
– V1 x V0 M

– V1 contains the data and V0 is used as an index

– Stores a vector into memory in a sparse vector whose nonzero entries
are indexed

Masking Instructions

• A mask vector is used to:

– Compress a vector to a shorter index vector

– Expand a vector to a longer index vector

• Mapping:

– V0 x Vm V1

Masking Instructions

• A mask vector is used to:
– Compress a vector to a shorter index vector

– Expand a vector to a longer index vector

• Mapping:
– V0 x Vm V1

Vector Operands and Memory

Access
• Arbitrary length

• Arbitrary distribution in memory
– A matrix is either row major or column major

– Each row or column can be used as a vector

– Vector elements are not necessarily in contiguous memory locations
• Row elements are in contiguous locations with stride n (n is the matrix order)

• Column elements are in locations with stride n

• Diagonal elements are in locations with stride n+1

• To access a vector in memory:
– Base address

– Stride

– Length

• Fast vector access necessary to match the pipeline rate

• The access path itself is pipelined: access pipe

C-Access Memory Organization

• Vector access scheme from interleaved memory modules

• m-way low-order interleaved memory structure

• Allows m memory words to be accessed concurrently

• This is called C-access

S-Access Memory Organization

• Similar to low-order interleaved memory
– High order bits select modules

– Words from modules are latched at the same time

– Low order bits select words from data latches

– This is done through the multiplexed with higher speeds (minor cycles)

• Allows simultaneous access

• This is called S-access

Interleaved Fetch and Access

• If the minor cycle is selected 1/m
– m words (one row) is accessed in 2 memory (major) cycles

• If fetch and access to the latches are interleaved
– m words is accessed in 1 memory cycle

C/S Access

• C-access and S-access are combined

• n access busses with m interleaved memory modules

• The m modules on each bus are m-way interleaved to allow C-access

• The n busses operate in parallel to allow S-access

Balanced Vector/Scalar Ratio

• In a supercomputer separate hardware resources are
dedicated to concurrent vector and scalar operations

• Vector processing is needed for regularly structured
parallelism in scientific and engineering computations

• For a better performance these two types of operations
must be balanced

• Vector balance point:
– Percentage of vector code to achieve equal utilization of vector

and scalar hardware

– In best case none of the vector and scalar hardware is idle at
any time

Vector Balance Point

• Percentage of vector code to achieve equal

utilization of vector and scalar hardware

• Example:

– System capability:

• 9 Mflops in vector mode

• 1 Mflops in scalar mode

– Equal time will be spent in each mode if the code is:

• 90% vector code

• 10% scalar code

– The vector balance point is 0.9

Compound Vector Processing

CVF

• Compound Vector Function:

– A composite function of vector operations

converted from a looping structure of linked

scalar operations

Example

• X(I) and Y(I) are two source vectors with

length N in memory

Vectorized Code

• Expressed as a CVF:

Compound Vector Functions

• d

Strip-Mining

• Segmentation of a long vector in memory

• Fixed length segments

• Loading and processing the segments one

segment at a time

• Segment length matches the vector register size

• More flexible if vector register size can be

configured

• The vector register used for the vector is not

released until all the segments are processed

Vector Loop

• The program construct for processing long

vectors is called a vector loop

• Strip-mining is a part of the vector loop

• All is done in hardware

Chaining

• Chaining of multiple pipelines is used for

concurrent processing of several vector

operations

• A CVF is a candidate for chaining

• Actual implementation depends on the

hardware

Functional Units in the Chain

• Linked vector operations must follow a
linear data flow pattern

• Functional pipeline units must be
independent of each other

• Same unit cannot be assigned to execute
more than one instruction in the same
chain

• Vector registers must be used as interface
between functional pipelines

Examples of Pipeline Chaining

Chaining with only one memory-access pipe compared to chaining with
three memory-access pipes

The Vector Registers

• The successive output results of a pipeline
are fed into the vector register one
element per cycle

• The vector register is then used as an
input register for the next pipeline unit in
the chain

• The interface registers must be able to
pass one vector element per cycle
between adjacent pipelines

Timing in Various Chaining

Scenarios in the Example

• Sequential execution
without chaining

• Chaining with only one
memory access pipe

• Chaining with three
memory access pipes

Multipipeline Networking

• Generalization of the idea of linking vector
operations (chaining)

• Instead of a linear chain, a pipeline net (pipenet)
is built

• Multiple functional pipelines are linked to
achieve systolic computation of CVFs

• A systolic array is formed with a network of
functional units which are locally connected and
operate synchronously

• Unlike a systolic architecture which is fixed, a
pipenet can be configured dynamically

Implementation of a Pipenet

Generalized Pipenet Model

SIMD Computers

SIMD Computers

• Vector processing can be carried out by SIMD
computers

• Vector instruction’s operands must have a fixed
length of n equivalent to the number of PEs

• Two models:
– Distributed memory model

– Shared memory model

Distributed-Memory Model

• Spatial parallelism is explored

– An array of PEs

– An array control unit

• Program and data are loaded into the control memory through a
host unit

Distributed-Memory Model

• Instructions are sent to the control unit for decoding

• A scalar or program control operation is directly executed by a
scalar processor attached to the control unit

• A vector instruction will be broadcast to all PEs for execution

• Partitioned data sets are distributed to all the local memories
attached to the PEs through a vector data bus

Distributed-Memory Model

• The PE s are synchronized in hardware by the control unit

• The same instruction is executed by all the PEs in the same cycle

• Masking logic is provided to disable any PE from participating in a
given instruction cycle

• The PE s are interconnected by a data-routing network which
performs inter-PE data communications

• The data-routing network is under program control through the
control unit

Distributed-Memory SIMD Model

Shared-Memory SIMD Model

