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MULTIPROCESSORS AND MULTICOMPUTERS

7.1   MULTIPROCESSOR SYSTEM INTERCONNECTS



Multiprocessors Vs Multicomputers
The main difference between multiprocessor and multicomputer is that
the multiprocessor is a system with two or more CPUs that is capable
of performing multiple tasks at the same time while a multicomputer
is a system with multiple processors that are connected via an
interconnection network to perform a computation task.



Parallel processing demands the use of efficient system interconnects
for fast communication among multiple processors and shared memory,
I/O and peripheral devices.



Generalized Multiprocessor System



Generalized Multiprocessor System
Each processor Pi is attached to its own local memory and 
private cache.

Multiple processors connected to shared memory through 
interprocessor memory network (IPMN).

Processors share access to I/O and peripherals through 
processor-I/O network (PION).

Both IPMN and PION are necessary in a shared-resource 
multiprocessor.

An optional interprocessor communication network (IPCN) 
can permit processor communication without using shared 
memory.



Interconnection Network 
Characteristics
Timing Protocol
◦ Synchronous – controlled by a global clock
◦ Asynchronous – use handshaking or interlock mechanisms

Switching Method
◦ Circuit switching – a pair of communicating devices control the path 

for the entire duration of data transfer
◦ Packet switching – large data transfers broken into smaller pieces, 

each of which can compete for use of the path

Network Control
◦ Centralized – global controller receives and acts on requests
◦ Distributed – requests handled by local devices independently



7.1.1 Hierarchical Bus Systems
A bus system is a hierarchy of buses connection various system 
and subsystem components.

Each bus has a complement of control, signal, and power lines.

There is usually a variety of buses in a system:
◦ Local bus – (usually integral to a system board) connects various major 

system components (chips)
◦ Memory bus – used within a memory board to connect the interface, the 

controller, and the memory cells
◦ Data bus – might be used on an I/O board or VLSI chip to connect various 

components
◦ Backplane – like a local bus, but with connectors to which other boards 

can be attached





Hierarchical Buses and caches
There are numerous ways in which buses, processors, memories, and 
I/O devices can be organized.

One organization has processors (and their caches) as leaf nodes in a 
tree, with the buses (and caches) to which these processors connect 
forming the interior nodes.

This generic organization, with appropriate protocols to ensure cache 
coherency, can model most hierarchical bus organizations.





Bridges
The term bridge is used to denote a device that is used to connect two 
(or possibly more) buses.

The interconnected buses may use the same standards, or they may be 
different (e.g. PCI and ISA buses in a modern PC).

Bridge functions include
◦ Communication protocol conversion
◦ Interrupt handling
◦ Serving as cache and memory agents





7.1.2 Crossbar Switch and Multiport 
Memory



Network stages
Single stage networks are sometimes called recirculating networks
because data items may have to pass through the single stage many 
times.

◦ The crossbar switch and the multiported memory organization (seen later) 
are both single-stage networks.

This is because even if two processors attempted to access the same 
memory module (or I/O device at the same time, only one of the 
requests is serviced at a time.

Multistage networks consist of multiple stages of switch boxes, and 
should be able to connect any input to any output.





Blocking vs nonblocking
networks
A multistage network is called blocking if the simultaneous connections 
of some multiple input-output pairs may result in conflicts in the use of 
switches or communication links.

A nonblocking multistage network can perform all possible connections 
between inputs and outputs by rearranging its connections.





Crossbar Networks
Crossbar networks connect every input to every output through a 
crosspoint switch.

A crossbar network is a single stage, non-blocking permutation network.

In an n-processor, m-memory system, n m crosspoint switches will be 
required.  

Each crosspoint is a unary switch which can be open or closed, providing 
a point-to-point connection path between the processor and a memory 
module.





Crosspoint Switch Design
Out of n crosspoint switches in each column of an n  m
crossbar mesh, only one can be connected at a time.

Crosspoint switches must be designed to handle the
potential contention for each memory module.

Each processor provides a request line, a read/write line, a
set of address lines, and a set of data lines to a crosspoint
switch for a single column.

The crosspoint switch eventually responds with an
acknowledgement when the access has been completed.



Schematic of a Crosspoint 
Switch



Multiport Memory
Since crossbar switches are expensive, and not suitable for systems with many 
processors or memory modules, multiport memory modules may be used instead.

A multiport memory module has multiple connections points for processors (or I/O 
devices), and the memory controller in the module handles the arbitration and 
switching that might otherwise have been accomplished by a crosspoint switch.



Multiport Memory Examples



7.1.3 Omega Networks
N-input Omega networks, in general, have log2n stages, with the input 
stage labeled 0.

The interstage connection (ISC) pattern is a perfect shuffle.

Routing is controlled by inspecting the destination address.  When the i-
th highest order bit is 0, the 22 switch in stage i connects the input to 
the upper output.  Otherwise it connects the input to the lower output.



How to read the figure:
•Pick a number at the left (e.g., 4 = 100) 
•Rotate left: 100 ---> 001 (= 1) 
•Connect 4 to 1 
You have to do this in every stage
no.stages depends on i/p o/p bits



Omega Network without 
Blocking



Consider the routing message from input 001 to output 011.

Involves switches A,B and C.

compare MSB bit

(001 to 011): straight, cross, straight

(101 to 101): A, E, D straight



Blocking Effects
Blocking exists in an Omega network when the requested 
permutation would require that a single switch be set in 
two positions simultaneously.

Obviously this is impossible, and requires that one of the 
permutation requests be blocked and tried in a later pass.

In general, with 22 switches, an Omega network can 
implement n n/2 permutations in a single pass.  For n = 8, 
this is about 10% of all possible permutations.

In general, a maximum of log2n passes are needed for an n-
input Omega network.



Omega Network with Blocking

Conflicts at F by 000->110 and 100->111
Conflicts at G by 011->000 and 111->011



Omega Broadcast
An Omega network can be used to broadcast data to multiple 
destinations.

The switch to which the input is connected is set to the broadcast 
position (input connected to both outputs).

Each additional switch (in later stages) to which an output is directed is 
also set to the broadcast position.



Omega Broadcast



Larger Switches
Larger switches (more inputs and outputs, and more switching patterns) 
can be used to build an Omega network, resulting in fewer stages.

For example, with 44 switches, only log416 stages are required for a 
16-input switch.

A k-way perfect shuffle is used as the ISC for an Omega network using k 
 k switches.



Omega Network with 44 Switches



Butterfly Networks
Butterfly networks are built using crossbar switches instead of those 
found in Omega networks.

There are no broadcast connections in a butterfly network, making 
them a restricted subclass of the Omega networks.





Hot Spots
When a particular memory module is being heavily accessed by 
multiple processors at the same time, we say a hot spot exists.

For example, if multiple processors are accessing the same memory 
location with a spin lock implemented with a test and set instruction, 
then a hot spot may exist.

Obviously, hot spots may significantly degrade the network 
performance.



Dealing With Hot Spots
To avoid the hot spot problems, we may develop special operations that 
are actually implemented partially by the network.

Consider the instruction Fetch&Add(x,e), which has the following 
definition (x is a memory location, and the returned value is stored in a 
processor register and e integer increment):

Fetch&Add(x,e)

{temp  x
x  x + e
return temp}



Implementing Fetch&Add
When n processors attempt to execute Fetch&Add on the same location 
simultaneously, the network performs a serialization on the requests, 
performing the following steps atomically.

◦ x is returned to one processor, x+e1 to the next, x+e1+e2, to the next, and so 
forth.

◦ The value x+e1+e2+…+en is stored in x.

Note that multiple simultaneous test and set instructions could be 
handled in a similar manner.



The Cost of Fetch&Add
Clearly a feature like Fetch&Add is not available at no cost.

Each switch in the network must be built to detect the Fetch&Add 
requests (distinct from other requests), queuing them until the 
operation can be atomically completed.

Additional switch cycles may be required, increasing network latency 
significantly.





7.2  CACHE COHERENCE & SYNCHRONIZATION



The Cache Coherence Problem
In a multiprocessor system, data inconsistency may occur among adjacent levels
or within the same level of the memory hierarchy. For example, the cache and the
main memory may have inconsistent copies of the same object.

As multiple processors operate in parallel, and independently multiple caches may
possess different copies of the same memory block, this creates cache coherence
problem.

Cache coherence schemes help to avoid this problem by maintaining a uniform
state for each cached block of data.





Let X be an element of shared data which has been referenced by two processors,
P1 and P2. In the beginning, three copies of X are consistent.

If the processor P1 writes a new data X1 into the cache, by using write-through
policy, the same copy will be written immediately into the shared memory. In this
case, inconsistency occurs between cache memory and the main memory.

When a write-back policy is used, the main memory will be updated when the
modified data in the cache is replaced or invalidated.



Causes of Cache Inconsistency
In general, there are three sources of inconsistency problem −

◦ Sharing of writable data
◦ Process migration
◦ I/O activity



Inconsistency After Process Migration
If a process accesses variable X (resulting in it being placed in the 
processor cache), and is then moved to a different processor and 
modifies X (to X1), then the caches on the two processors are 
inconsistent.

This problem exists regardless of whether write-through caches or 
write-back caches are used.



Inconsistency after Process Migration



Inconsistency Caused by I/O
Data movement from an I/O device to a shared primary memory 
usually does not cause cached copies of data to be updated.

As a result, an input operation that writes X causes it to become 
inconsistent with a cached value of X.

Likewise, writing data to an I/O device usually use the data in the 
shared primary memory, ignoring any potential cached data with 
different values.

A potential solution to this problem is to require the I/O 
processors to maintain consistency with at least one of the 
processor’s private caches, thus “passing the buck” to the 
processor cache coherence solution (which will we see).



I/O Operations Bypassing the Cache



A Possible Solution



Cache Coherence Protocols
When a bus is used to connect processors and memories in 
a multiprocessor system, each cache controller can “snoop” 
on all bus transactions, whether they involve the current 
processor or not.  If a bus transaction affects the 
consistency of a locally-cached object, then the local copy 
can be invalidated.

If a bus is not used (e.g. a crossbar switch or network is 
used), then there is no convenient way to “snoop” on 
memory transactions.  In these systems, some variant of a 
directory scheme is used to insure cache coherence.



7.2.2 Snoopy Bus Protocols
Two basic approaches

◦ write-invalidate – invalidate all other cached copies of a data object when 
the local cached copy is modified (invalidated items are sometimes called 
“dirty”)

◦ write-update – broadcast a modified value of a data object to all other 
caches at the time of modification

Snoopy bus protocols achieve consistency among caches and shared 
primary memory by requiring the bus interfaces of processors to watch 
the bus for indications that require updating or invalidating locally 
cached objects. 



Initial State – Consistent 
Caches



After Write-Invalidate by P1



After Write-Update by P1



Operations on Cached Objects
Read – as long as an object has not been invalidated, read operations 
are permitted, and obviously do not change the object’s state

Write – as long as an object has not been invalidated, write operations 
on the local object are permitted, but trigger the appropriate protocol 
action(s).

Replace –the cache block containing an object is replaced (by a different 
block)



Write-Through Cache
In the transition diagram (next slide), the two possible object 
states in the “local” cache (valid and invalid) are shown.

The operations that may be performed are read, write, and 
replace by the local processor or a remote processor.

Transitions from locally valid to locally invalid occur as a result of 
a remote processor write or a local processor replacing the cache 
block.

Transitions from locally invalid to locally valid occur as a result of 
the local processor reading or writing the object (necessitating, of 
course, the fetch of a consistent copy from shared memory).



Write-Through Cache State Transitions

R = Read, W = Write, Z = Replace
i = local processor, j = other processor



Write-Back Cache
The state diagram for the write-back protocol divides the 
valid state into RW and RO states.

The protocol essentially gives “ownership” of the cache 
block containing the object to a processor when it does a 
write operation.

Before an object can be modified, ownership for exclusive 
access must first be obtained by a read-only bus transaction 
which is broadcast to all caches and memory.

If a modified block copy exists in a remote cache, memory 
must first be updated, the copy invalidated, and ownership 
transferred to the requesting cache. 



Write-Back Cache



Goodman’s Cache Coherence Protocol
Combines advantages of write-back and write-through 
protocols.

First write of a cache block uses write-through.

Cache states (see previous slide):
◦ Valid: block is consistent with memory, has been read, but not 

modified.
◦ Invalid: block not in cache, or is inconsistent with memory.
◦ Reserved: block written once after being read and is consistent with 

memory copy (which is the only other copy).
◦ Dirty: block modified more than once, inconsistent with all other 

copies.



Goodman’s Write-Once 
Protocol State Diagram



Commands and State Transitions
Local processor accesses:
◦ Read-hit or read-miss (P-Read) – transition to valid state.
◦ Write-hit (P-Write)

◦ First one results in transition to reserved state.
◦ Additional writes go to (or stay in) dirty state.

◦ Write-miss – transition to dirty state.

Remote processor invalidation commands (issued over 
snoopy bus):
◦ Read-invalidate – read a block and invalidate all other copies.
◦ Write-invalidate – invalidate all other copies of a block.
◦ Bus-read (Read-blk) – normal read; transition to valid state.



Cache events and actions
Read miss

Write miss

Read hit

Write hit

Block replacement



Snoopy Bus Protocol 
Performance

Depends heavily on the workload.

Goal
◦ Reduce bus traffic and effective memory access time

In uniprocessors:
◦ bus traffic and memory-access time heavily influenced by cache misses.
◦ Miss ratio increases as block size increases, up to a data pollution point (that is, as blocks 

become larger, the probability of finding a desired data item in the cache increases).
◦ Data pollution point increases with larger cache sizes.



Snoopy Bus Protocol Performance
In multiprocessor systems

◦ Write-invalidate protocol
◦ Better handles process migrations and synchronization than other protocols.
◦ Cache misses can result from invalidations sent by other processors before a cache access, which 

significantly increases bus traffic.
◦ Bus traffic may increase as block sizes increase.
◦ Write-invalidate facilities writing synchronization primitives.
◦ Average number of invalidated cache copies is small in a small multiprocessor.

◦ Write-update procotol
◦ Requires bus broadcast facility
◦ May update remote cached data that is never accessed again
◦ Can avoid the back and forth effect of the write-invalidate protocol for data shared among 

multiple caches
◦ Can’t be used with long write bursts
◦ Requires extensive tracing to identify actual behavior



7.2.3 Directory-based 
Protocols
The snoopy bus-based protocols may be adequate for relatively small 
multiprocessor systems, but are wholly inadequate for large 
multiprocessor systems.

Commands (in the form of messages) to control the consistency of 
remote caches must be sent only to those processors with caches 
containing a copy of the affected block (since broadcast is very 
expensive in a multistage network – like Omega).

This gives rise to directory-based protocols.



Directory Structures
Cache directories store information on where (in which 
processors) copies of cache blocks reside.

Central directory approaches (with copies of all cache 
directories) is very large, and requires an associative search 
(like the individual cache directories).

Distributed directory approaches maintains separate 
director which records state and presence information for 
each memory block.



Types of Directory Protocols
Directory entries are pairs identifying cache blocks and processor 
caches holding those blocks.

Three different types of directory protocols:
◦ Full-map directories – each directory entry can identify all processors with 

cached copies of data; with N processors, each directory entry must have N
processor ID identifiers.

◦ Limited directories – each entry has a fixed number of processor identifiers, 
regardless of the system size.

◦ Chained directories – emulate full-map directories by distributing entries 
among the caches.



Full-map Protocols
Directory entries have one bit per processor in the system, and 
another bit to indicate if the data has been modified (“dirty”).

If the dirty bit is set, then only one processor must be identified 
in the bit map; only that processor is allowed to write the block 
into memory.

Cache maintains two bits of state information per block:
◦ Is the cached block valid?
◦ Can a valid cached block be written to memory?

The purpose of the cache coherence protocol is to keep the 
cache’s state bits and those in the memory directory consistent.



Three States of a Full-Map Directory



Full Map State Changes
In the first state (upper left in previous slide), X is missing from all 
caches.

In the second state, three caches are requesting copies of X.   The bits of 
the three processors are set, and the dirty bit is still ‘C’ (clean), since no 
processor has requested to write X.

In the third state, the dirty bit is set (‘D’), since a  processor requested 
to write X.  Only the corresponding processor has it’s bit set in the map.



Write Actions
Cache C3 detects the block is valid, but the processor doesn’t 
have write permission.

Write request issued to memory, stalling the processor.

Other caches receive invalidate requests and send 
acknowledgements to memory.

Memory receives acknowledgements, sets dirty bit, clears 
pointers to other processors, sends write permission to C3.

◦ By waiting for acknowledgements, the memory ensures sequential 
consistency.

C3 gets write permission, updates cache state, and reactivates 
the processor.



Full-Map Protocol Benefits
The full-map protocol provides an upper bound on the performance of 
centralized directory-based cache coherence.

It is not scalable, however, because of the excessive memory overhead 
it incurs.



Limited Directories
Designed to solve the directory size problem.

Restricts the number of cached copies of a datum, thus limiting 
the growth of the directory.

Agrawal notation: Diri X
◦ i indicates number of pointers in directory
◦ X is NB for no broadcast, B for broadcast
◦ E.g. full map with N processors is DirN NB

In the example (next slide), the left figure shows C1 and C2 
holding copies of X.  When C3 requests a copy, the C1 or C2 copy 
must be invalidated using a process called “eviction,” as shown by 
the right figure.



Eviction in a Limited Directory



Limited Directory Memory Size
In the full-map protocol, it is sufficient to use a single bit to identify if 
each of the N processors has a copy of the datum.

In a limited directory scheme, processor numbers must be maintained, 
requiring log2 N bits each.

If the code being executed on a multiprocessor system exhibits 
“processor locality,” then a limited directory is sufficient to capture the 
identity of the processors.



Limited Directory Scalability
Limited directory schemes for cache coherency in non-bus systems are 
scalable, in that the number of resources required for their 
implementation grows linearly as the number of processors grows.

Diri B protocols exist that allow more than i copies of a block to exist in 
caches, but must use broadcast to invalidate more than i copies of a 
block (because of a write request).  Without a broadcast capability in 
the connection network, ensuring sequential consistency is difficult.



Chained Directories
Chained directories are scalable (like limited directories).

They keep track of shared copies of data using a chain of 
directory pointers.

Each cache must include a pointer (which can be the chain 
termination pointer) to the next cache that contains a 
datum.

When a processor requests a read, it is sent the datum 
along with a pointer to the previous head of the list (or a 
chain termination pointer if it is the only processor 
requesting the datum).



A Chained Directory Example



Invalidation in Chained Directories
When a processor requests to write a datum, the processor at the head 
of the list is sent an invalidate request.

Processors pass the invalidate request along until it reaches the 
processor at the end of the list.

That processor sends an acknowledgement to the memory, which then 
grants write access to the processor requesting such.

Author suggests this be called the “gossip” protocol.



Complications with Chained 
Dirs
Suppose processor i requests Y, and the (direct-mapped) cache 
already contains an entry X which maps to the same location as Y.  
It must evict X from its cache, thus requiring the list of X’s users to 
be altered.

Two schemes for the list alteration:
◦ Send a message “down the list” to cache i-1 with a pointer to cache i+1, 

removing i from the list.
◦ Invalidate X in caches i+1 through N.

Alternately, a doubly-linked list could be used, with the expected 
implications for size, speed, and protocol complexity.

Chained directories are scalable, and cache sizes (not number of 
processors) control the number of pointers.



Alternative Coherency 
Schemes
Shared caches – allow groups of processors to share caches.  
Within the group, the coherency problem disappears.  Many 
configurations are possible.

Identify noncacheable data – have the software mark data 
(using hardware tags) that can be shared (e.g. not 
instructions or private data), and disallow caching of these.

Flush caches at synchronization – force a rewrite of cached 
data each time synchronization, I/O, or process migration 
might affect any of the cached data.  Usually this is slow.



Hardware Synchronization Methods
Test and set – TS instruction atomically writes 1 to a memory location 
and returns its previous value (0 if the controlled resource is free).  All 
processors attempting TS on same location except one will get 1, with 
one processor getting zero.  The “spin lock” is cleared by writing 0 to the 
location.

Suspend lock – a lock is designed to generate an interrupt when it is 
released (opened).  A process wanting the lock (but finding it closed) 
will disable disable all interrupts except that associated with the lock 
and wait.



Wired Barrier Synchronization
Barriers are used to block a set of processes until each reaches the 
same code point.

This scheme uses a wire which is “1” unless one of the processors sets 
its X bit, which forces the wire to “0”.  The X bit is set when a process 
has not yet reached the barrier.

As each process reaches the barrier, it clears its X bit and waits for the Y 
bit to become “1”; the Y bit reports the state of the wire.



Wired Barrier Implementation



Wired Barrier Example
fork

X1  1 X2  1

work work

X1  0 X2  0

Y1 = 1? Y2 = 1?

No No

Yes Yes



7.3 THREE GENERATIONS OF MULTICOMPUTERS



Design Choices in the Past
Processors

◦ Low cost commodity (off-the-shelf) processors

Memory Structure
◦ Distributed memory organization
◦ Local memory with each processor

Interconnection Schemes
◦ Message passing, point-to-point , direct networks with send/receive semantics 

with/without uniform message communication speed

Control Strategy
◦ Asynchronous MIMD, MPMD and SPMD operations





The Past, Present and Future 
Development

First Generation
◦ Example Systems: Caltech’s Cosmic Cube, Intel iPSC/1, Ametek S/14, 

nCube/10

Second Generation
◦ Example Systems: iPSC/2, i860, Delta, nCube/2, Supernode 1000, Ametek

Series 2010

Third Generation
◦ Example Systems: Caltech’s Mosaic C, J-Machine, Intel Paragon



First and second generation multi-computers are regarded as medium-
grain systems

Third generation multi-computers were regarded as fine-grain systems.

Fine-grain and shared memory approach can, in theory, combine the 
relative merits of multiprocessors and multi-computers in a 
heterogeneous processing environment





The Intel Paragon System
Previously, homogeneous nodes were used to make hypercube
multicomputers, as all the functions were given to the host. So, this
limited the I/O bandwidth. Thus to solve large-scale problems efficiently
or with high throughput, these computers could not be used.

The Intel Paragon System was designed to overcome this difficulty. It
turned the multicomputer into an application server with multiuser
access in a network environment.



In late 1992, intel shipped a commercial version of the DELTA, called Paragon. The
Paragon uses the same rectangular grid structure as the DELTA, but faster
processing nodes.

The Paragon node contains two identical Intel i860XP processors, an improved
50MHz version of the i860 used in previous Intel systems.

This processor has peak rates of 75flops (64-bit) and 42MIPS and can support from
16-128 Mbytes with a 400 Mbytes/sec processor-memory bandwidth and an 800
Mbytes/sec processor-cache bandwidth.



Paragon nodes are organized into three partitions: The Compute 
partition, the Service Partition and the I/O partition.







7.4  MESSAGE PASSING MECHANISMS



Message Passing in Multicomputers
Multicomputers have no shared memory, and each “computer” consists 
of a single processor, cache, private memory, and I/O devices.

Some “network” must be provided to allow the multiple computers to 
communicate.

The communication between computers in a multicomputer is called 
“message passing.”



Message Formats
Messages may be fixed or variable length.

Messages are comprised of one or more packets.

Packets are the basic units containing a destination address (e.g. 
processor number) for routing purposes.

Different packets may arrive at the destination asynchronously, so they 
are sequence numbered to allow reassembly.

Flits (flow control digits) are used in wormhole routing; they’re 
discussed a bit later 



Store and Forward Routing
Packets are the basic unit in the store and forward scheme.

An intermediate node must receive a complete packet before it can be 
forwarded to the next node or the final destination, and only then if the 
output channel is free and the next node has available buffer space for 
the packet.

The latency in store and format networks is directly related to the 
number of intermediate nodes through which the packet must pass.



Flits and Wormhole Routing
Wormhole routing divides a packet into smaller fixed-sized pieces called 
flits (flow control digits).

The first flit in the packet must contain (at least) the destination 
address.  Thus the size of a flit must be at least log2 N in an N-processor 
multicomputer.

Each flit is transmitted as a separate entity, but all flits belonging to a 
single packet must be transmitted in sequence, one immediately after 
the other, in a pipeline through intermediate routers.



Store and Forward vs. 
Wormhole



Asynchronous Pipelining
Each intermediate node in a wormhole network, and the 
source and destination, each have a buffer capable of 
storing a flit.

Adjacent nodes communicate requests and 
acknowledgements using a one-bit ready/request (R/A) line.
◦ When a receiver is ready, it pulls the R/A line low.
◦ When the sender is ready, it raises the R/A line high and transmits 

the next flit; the line is left high.
◦ After the receiver deals with the flit (perhaps sending it on to 

another node), it lowers the R/A line to indicate it is ready to accept 
another flit.

◦ The cycle repeats for transmission of other flits.



Wormhole Node Handshaking



Asynchronous Pipeline Speeds
An asynchronous pipeline can be very efficient, and use a clock speed 
higher than that used in a synchronous pipeline.

The pipeline can be stalled if buffers or successive channels in the path 
are not available during certain cycles.

A packet could be “buffered, blocked, dragged, detoured” – and just 
knocked around, in general – if the pipeline stalls.



Latency
Assume

◦ D = # of intermediate nodes (routers) between the source and 
destination

◦ L = packet length (in bits)
◦ F = flit length (in bits)
◦ W = the channel bandwidth (in bits/sec)

Ignoring network startup time, propagation and resource delays:
◦ store and forward latency is L/W  (D+1), and
◦ wormhole latency is L/W + F/W  D.

F is usually much smaller than L, and thus D has no significant 
effect on latency in wormhole systems.



7.4.2 Virtual Channels
The channels between nodes in a wormhole-routed multicomputer are 
shared by many possible source and destination pairs.

A “virtual channel” is a pair of flit buffers (in nodes) connected by a 
shared physical channel.

The physical channel is “time shared” by all the virtual channels.

Other resources (including the R/A line) must be replicated for each of 
the virtual channels.



Virtual Channel Example



Deadlock
Deadlock can occur if it is impossible for any messages to move 
(without discarding one).

◦ Buffer deadlock occurs when all buffers are full in a store and forward 
network.  This leads to a circular wait condition, each node waiting for space 
to receive the next message.

◦ Channel deadlock is similar, but will result if all channels around a circular 
path in a wormhole-based network are busy (recall that each “node” has a 
single buffer used for both input and output).



Buffer Deadlock in a Store and 
Forward Network



Channel Deadlock with 
Wormhole Routing



Deadlock Avoidance



7.4.3 Flow Control
If multiple packets/flits demand the same resources at a given node, 
then there must be some policy indicating how the conflict is to be 
resolved.

These policies then determine what mechanisms can be used to deal 
with congestion and deadlock.



Packet Collision Resolution
Consider the case of two flits both wanting to use the same channel or 
the same receive buffer at the same time.

How is the “collision” resolved?  Who gets the resource?  What happens 
to the other flit?



Virtual Cut-Through Routing
Solution: temporarily store one of the packets in a different buffer.

Positive:
◦ No messages lost
◦ Should perform as well as wormhole with no conflicts

Negative:
◦ Potentially large buffer required (with potentially large delays).
◦ Not suitable for routers.
◦ Cycles must be avoided



Blocking
Solution: prevent one of the messages from advancing while the other 
uses the buffer/channel.

Positive:
◦ Messages are not lost.

Negative
◦ Node sending blocked packet is idled.



Discarding
Solution: drop one of the messages in contention for the 
buffer/channel.

Positive:
◦ Simple to implement

Negative:
◦ Loses messages, resulting in a severe waste of resources.



Detour
Solution: send the conflicting message somewhere (anywhere) else.

Positive:
◦ Simple to implement

Negative:
◦ May waste more channel resource than necessary
◦ May cause other resources to be idled
◦ May cause livelock (e.g. four dining philosophers, with two seated across 

from each other conspiring to starve the other two).



Collision Resolution 
Techniques



Routing
Deterministic routing: the path from source to destination is 
determined uniquely from the source and destination addresses.

Adaptive routing: the path may depend on network conditions.



Deterministic Routing Using
Dimension Ordering

Dimension ordering algorithms are based on the selection of a 
sequence of channels following a specified order.

For example, routing in a two-dimensional mesh is called X-Y routing, 
because the X-dimension routing path is decided before choosing the Y-
dimension path.

In hypercubes, the example algorithm is called E-cube routing, and 
again specifies the sequence of channels to be used.



E-cube Routing on a 
Hypercube
Assume the system has N = 2n nodes; the dimensions of the 
hypercube are numbered 1, 2, …, n.

Each node has a binary address with n bits (numbered n-1 to 0).  
The ith bit in a node address corresponds to the ith dimension.

Source address = s, destination address = d.

Algorithm:
◦ Compute direction bit ri = si-1 xor di-1 for all dimensions.  Now set i = 1 

and v = s.
◦ Route from the current node v to the next node v xor 2i-1 if ri = 1; skip this 

step if ri = 0.
◦ Move to dimension i + 1 (i.e. i  i + 1).  If i <= n, go to the previous step.



E-cube Routing Example



E-Cube Routing Example 
(Detail)
Source Address s = 0110, n = 4 (dimension of cube)

Destination Address d = 1101

“Direction Bits” r = 0110 xor 1101 = 1011

Route from 0110 to 0111 because r = 1011

Route from 0111 to 0101 because r = 1011

Skip dimension 3 because r = 1011

Route from 0101 to 1101 because r = 1011



X-Y Routing on a 2-D Mesh
X-Y routing is similar, in concept, to E-cube routing in that the route 
from the source to the destination is determined completely from their 
addresses.

In X-Y routing, the message travels “horizontally” (in the X-dimension) 
from the source node to the “column” containing the destination, 
where the message travels vertically.

There are four possible direction pairs, east-north, east-south, west-
north, and west-south.



X-Y Routing Example



Dimension Ordering Characteristics
In general, X-Y routing can be expanded to an n-dimensional mesh.

Both X-Y routing and E-cube routing can be shown to be deadlock free.  
(Hint: compare with Havender’s “Standard Allocation Pattern” for 
resource use in an OS.)

Both techniques can be used with store-and-forward or wormhole 
routing networks to produce minimal routes.

Dimension ordering does not work on a torus.



Adaptive Routing
The main purpose of adaptive routing is to avoid deadlock.

Adaptive routing makes use of virtual channels between 
nodes to make routing more economical and feasible to 
implement.

Virtual channels allow the network to exhibit different 
characteristics at different times (that is, it “adapts”).

For example, (c) and (d) on the next slide are adaptive 
configurations of (a), but they prevent deadlock from 
occurring, since they allow only west-{north/south} routing 
(in c), or east-{north/south} routing (in d).



Adaptive Use of Virtual 
Channels to Avoid Deadlock



Communication Patterns
Four possible patterns

◦ Unicast – traditional one to one communication
◦ Multicast – one to many communication, with one message sent to multiple 

destinations
◦ Broadcast – one to all communication, with one message sent to every 

possible destination
◦ Conference – many to many communication

Note that each of these can be implemented using simple sequential 
transmission of messages (unicast).



Efficiency Parameters
Two common efficiency parameters are:

◦ channel traffic – the number of channels used at any time instant to 
deliver messages

◦ communication latency – the longest time required for any packet to 
reach its destination

An optimal network would minimize both of these parameters for 
the communication patterns it uses.
However, these efficiency parameters are interrelated, and 
achieving minimums in each may not be possible.
Latency is more important than traffic in a store-and-forward 
network.
Traffic demand is more important than latency in a wormhole-
routed network.



Example 5-Destination Multicast
(a) Five unicasts, with traffic demand = 13 and latency = 4 (assuming 
one “hop” per unit time).

(b) Tree multicast with branching at multiple levels, with traffic demand 
= 7 and latency = 4.

(c) Tree multicast with only one branching node, with traffic demand = 6 
and latency = 5.

(d) Broadcast to all nodes with spanning tree.



Multicast & Broadcast Patterns



Hypercube 
Multicast/Broadcast
Broadcast on a hypercube of dimension n will have a latency 
not exceeding n.

A greedy algorithm for building a tree selects, at each node, 
the nodes in dimensions that will reach the largest number 
of remaining destinations (e.g. find the minimm cover set).

In the event of a tie, any of the tied dimensions can be 
selected (which means the resulting tree is not necessarily 
unique).

Note that all communication channels at each level of the 
multicast/broadcast tree must be ready at the same time, 
or else additional buffering might be required.





Broadcast on Hypercube



Multicast on Hypercube –
greedy algorithm

1st level channel:
0101->0111 & 0101->1101
2nd level channel:
1101->1111, 1101->1100 & 
0111->0110
3rd level channel:
1111->1110, 1111->1011, 
1100->1000 & 0110->0010
4th level channel:
1110->1010

Sending packet through the 
dimensions



Virtual Networks
With multiple virtual channels between nodes, it is possible to 
dynamically reconfigure a network into one of perhaps many different 
“virtual networks.”

The advantages of having many such virtual networks are
◦ routing needs can be used to tailor networks that yield results with simple 

and efficient routing algorithms
◦ deadlock can be completely eliminated (e.g. by not allowing cycles to exist in 

the virtual network)

Of course, adding channels to the network will increase the cost





Network Partitioning
Another benefit of having virtual channels between nodes is the ability 
to dynamically partition a network into multiple subnetworks for 
multicast communication.

Each subnet can carry a different multicast message at the same time.
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Vector Processing Principles

• Vector: 
– A set of scalar data items 

– All of the same type

– Stored in memory

• Stride:
– Address increments between successive elements of a vector

• Vector Processor: 
– Hardware resources to perform vector operations:

• Vector registers

• Functional pipelines

• Processing elements

• Register counters

• Vector Processing:
– Arithmetic or logic operations on vectors

• Vectorization:
– Conversion from scalar code to vector code



Performance

• Vector processing:
– Faster

– More efficient

– Reduced software overhead
• Loop control

• Memory access

– Matches with pipelining mechanism

• Speedup:
– Vectorization ratio

– Speed ration between vector and scalar operations

• Costs:
– Hardware costs

– Compiler (vectorizing compiler or vectorizer)

– Programming skills



Vector Instruction Types

• Vector-Vector Instructions

• Vector-Scalar Instructions

• Vector-Memory Instructions

• Vector Reduction Instructions

• Gather and Scatter Instructions

• Masking Instructions



Vector-Vector Instructions

• Vi Vj

• Vj x Vk Vi

• Examples:

V1 = sin (V2)

V3 = V1 + V2



Vector-Scalar Instructions

s x Vi Vj



Vector-Memory Instructions

• Vector load:
– M  Vi

• Vector store:
– Vi M



Vector Reduction Instructions

• Mappings:

– Vi Sj

– Vi x Vj Sk

• Examples:

– maximum of all elements

– minimum of all elements

– sum of all elements

– mean value of all elements

– dot product:

• s = S ai x bi for A = (ai) and B = (bi)



Gather and Scatter Instructions

• Gather:
– M  V1 x V0

– V1 contains the data and V0 is used as an 
index 

– Fetches from memory the nonzero elements 
of a sparse vector using indices that 
themselves are indexed

• Scatter:
– V1 x V0 M 

– V1 contains the data and V0 is used as an 
index 

– Stores a vector into memory in a sparse vector 
whose nonzero entries are indexed



Gather

• Gather:
– M  V1 x V0

– V1 contains the data and V0 is used as an index 

– Fetches from memory the nonzero elements of a sparse vector using 
indices that themselves are indexed



Scatter

• Scatter:
– V1 x V0 M 

– V1 contains the data and V0 is used as an index 

– Stores a vector into memory in a sparse vector whose nonzero entries 
are indexed



Masking Instructions

• A mask vector is used to:

– Compress a vector to a shorter index vector

– Expand a vector to a longer index vector

• Mapping:

– V0 x Vm V1



Masking Instructions

• A mask vector is used to:
– Compress a vector to a shorter index vector

– Expand a vector to a longer index vector

• Mapping:
– V0 x Vm V1



Vector Operands and Memory 

Access
• Arbitrary length

• Arbitrary distribution in memory
– A matrix is either row major or column major

– Each row or column can be used as a vector

– Vector elements are not necessarily in contiguous memory locations
• Row elements are in contiguous locations with stride n (n is the matrix order)

• Column elements are in locations with stride n

• Diagonal elements are in locations with stride n+1

• To access a vector in memory:
– Base address

– Stride

– Length

• Fast vector access necessary to match the pipeline rate

• The access path itself is pipelined: access pipe



C-Access Memory Organization

• Vector access scheme from interleaved memory modules

• m-way low-order interleaved memory structure 

• Allows m memory words to be accessed concurrently

• This is called C-access



S-Access Memory Organization

• Similar to low-order interleaved memory
– High order bits select modules

– Words from modules are latched at the same time

– Low order bits select words from data latches

– This is done through the multiplexed with higher speeds (minor cycles)

• Allows simultaneous access 

• This is called S-access



Interleaved Fetch and Access

• If the minor cycle is selected 1/m 
– m words (one row) is accessed in 2 memory (major) cycles

• If fetch and access to the latches are interleaved 
– m words is accessed in 1 memory cycle



C/S Access

• C-access and S-access are combined

• n access busses with m interleaved memory modules

• The m modules on each bus are m-way interleaved to allow C-access

• The n busses operate in parallel to allow S-access



Balanced Vector/Scalar Ratio

• In a supercomputer separate hardware resources are 
dedicated to concurrent vector and scalar operations

• Vector processing is needed for regularly structured 
parallelism in scientific and engineering computations

• For a better performance these two types of operations 
must be balanced

• Vector balance point:
– Percentage of vector code to achieve equal utilization of vector 

and scalar hardware

– In best case none of the vector and scalar hardware is idle at 
any time



Vector Balance Point

• Percentage of vector code to achieve equal 

utilization of vector and scalar hardware

• Example:

– System capability:

• 9 Mflops in vector mode

• 1 Mflops in scalar mode

– Equal time will be spent in each mode if the code is:

• 90% vector code

• 10% scalar code

– The vector balance point is 0.9



Compound Vector Processing



CVF

• Compound Vector Function:

– A composite function of vector operations 

converted from a looping structure of linked 

scalar operations



Example

• X(I) and Y(I) are two source vectors with 

length N in memory



Vectorized Code

• Expressed as a CVF:



Compound Vector Functions

• d



Strip-Mining

• Segmentation of a long vector in memory

• Fixed length segments

• Loading and processing the segments one 

segment at a time

• Segment length matches the vector register size

• More flexible if vector register size can be 

configured

• The vector register used for the vector is not 

released until all the segments are processed



Vector Loop

• The program construct for processing long 

vectors is called a vector loop

• Strip-mining is a part of the vector loop

• All is done in hardware



Chaining

• Chaining of multiple pipelines is used for 

concurrent processing of several vector 

operations

• A CVF is a candidate for chaining

• Actual implementation depends on the 

hardware



Functional Units in the Chain

• Linked vector operations must follow a 
linear data flow pattern

• Functional pipeline units must be 
independent of each other

• Same unit cannot be assigned to execute 
more than one instruction in the same 
chain

• Vector registers must be used as interface 
between functional pipelines



Examples of Pipeline Chaining

Chaining with only one memory-access pipe compared to chaining with 
three memory-access pipes



The Vector Registers

• The successive output results of a pipeline 
are fed into the vector register one 
element per cycle

• The vector register is then used as an 
input register for the next pipeline unit in 
the chain

• The interface registers must be able to 
pass one vector element per cycle 
between adjacent pipelines 



Timing in Various Chaining 

Scenarios in the Example

• Sequential execution 
without chaining

• Chaining with only one 
memory access pipe

• Chaining with three 
memory access pipes



Multipipeline Networking

• Generalization of the idea of linking vector 
operations (chaining)

• Instead of a linear chain, a pipeline net (pipenet) 
is built

• Multiple functional pipelines are linked to 
achieve systolic computation of CVFs

• A systolic array is formed with a network of 
functional units which are locally connected and 
operate synchronously

• Unlike a systolic architecture which is fixed, a 
pipenet can be configured dynamically 



Implementation of a Pipenet



Generalized Pipenet Model



SIMD Computers



SIMD Computers

• Vector processing can be carried out by SIMD 
computers

• Vector instruction’s operands must have a fixed 
length of n equivalent to the number of PEs

• Two models:
– Distributed memory model

– Shared memory model



Distributed-Memory Model

• Spatial parallelism is explored

– An array of PEs   

– An array control unit

• Program and data are loaded into the control memory through a 
host unit



Distributed-Memory Model

• Instructions are sent to the control unit for decoding

• A scalar or program control operation is directly executed by a 
scalar processor attached to the control unit

• A vector instruction will be broadcast to all PEs for execution

• Partitioned data sets are distributed to all the local memories 
attached to the PEs through a vector data bus



Distributed-Memory Model

• The PE s are synchronized in  hardware by the control unit

• The same instruction is executed by all the PEs in the same cycle

• Masking logic is provided to disable any PE from participating in a 
given instruction cycle

• The PE s are interconnected by a data-routing network which 
performs inter-PE data communications

• The data-routing network is under program control through the 
control unit



Distributed-Memory SIMD Model



Shared-Memory SIMD Model


