Bus, Cache and shared memory



Bus System

* System bus of a computer system operates on
contention basis

* Effective bandwidth available to each
processor is inversely proportional to the
number of processor contending for the bus

e This is the reason for simplicity (4-6
processors) and low cost



Backplane bus specification

* It interconnects processors,
data storage and peripheral
devices in a tightly coupled
h/w configuration

* Allow the interconnection
between the devices

* Timing protocols
— Operational rules-orderly data transfers on the bus



Backplane Multiprocessor System

CPU Board Memory Board Bus Controllar
Processor Memo
and Cache A.-,-ayry ystam clock
driver, Daisy
.o Chain driver,
Power driver,
= Bus timer,
Functicnal Functional Arbiter
(Cther Boards M I
Modules for CPU., odules
Meamaory
and /O, etc.)
interface Interface interface
Logic Logic Logic
Siot 7 Slot k-7 Slot Kk

Backplanes (signal fines and connectors)

Data Transter Bus {(DTB)
{Data, Address, and Controt Lines)

DTB Arbitration Bus

Interrupt and Synchronization Bus

Utility Bus
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A
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Figure 5.1 Backplane buses, systerm interfaces, and slot connections to variow
functional boards in a multiprocessor system.




Data Transfer Bus (DTB)

 Data, address and control lines form Data
transfer bus (DTB).

— Transfers data, address and control signals

* Addressing lines are used to broadcast the
data and address

* The number of addressing lines is proportional
to the logarithm of the size of the address

space



* Data lines are proportional to the memory
word length
— VME bus system has 32 address lines and 32 data
lines
e Control lines are used to indicate read/write,
timing control and bus error conditions



Bus Arbitration and Control

Sharing of buses in an optimal way

The process of assigning control of the DTB to
a requester is called arbitration

Requester is called a master and the receiving
end is called a slave

Interrupt lines are used to handle interrupts

— This is prioritized



Functional modules

* |tis a collection of electronic circuitry that
resides on one functional board

* Arbiter is a functional module that accepts bus
requests from the requester module and
grants control of the DTB to one requester at a
time

* Bus timer measures the time for each data
transfer



An interrupter module generates an interrupt
request and provides status info when an
interrupt handler module requests

A location monitor- monitors the data transfers
over the DTB

A power monitor watches the status of the power
source and signals when power becomes
unstable

A system clock driver provides a clock timing
signal
— Board interface logic is needed to match the signal

line impedance, propagation time and termination
b/w backplane and plug-in boards



Physical limitations

* Due to electrical, mechanical & packaging
limitations, limited number of boards can be
plugged into a single backplane

* Multiple backplane buses can be mounted on
the same backplane chassis

* Bus system is difficult to scale, limited by
contention and packaging constraints



Addressing and Timing protocols

* Two IC chips connected to a bus:
1. active

2. passive

* Active chips are like processors act as bus
master

* Passive chips are memories can act only as
slaves



Master can initiate a bus cycle
Slaves respond to requests by a master

Only one master can control the bus at a time

One or more slaves can respond the master’s
requests at the same time



Bus Addressing

* Backplane is driven by a fixed cycle time called
bus cycle

* Bus cycle is determined by the electrical,
mechanical and packaging characteristics

* To optimize the performance, the bus should be
designed to minimize the time required for

1. Request handling
2. Arbitration

3. Addressing

4. Interrupts



Bus Addressing

* |dentify each board with a slot number

* When slot # matches contents of high-order
address lines, the board is selected as a slave
(slot addressing)



Broadcall and broadcast

* Broadcall is a read operation
— Multiple slaves placing their data on the bus lines
— It is used to detect multiple interrupt sources

* Broadcast is a write operation

— Multiple slaves writing their data into their storage
devices

— Timing protocol is needed to synchronize the
master and slave operations



Time

Bus

Master

slave

1.Send request to bus
2. Bus allocated
3. Load address/data on bus

5. Signal data transfer

8. Knowing data taken, remove
data and free the bus

10. Send next bus request

4. Slave selected after
signal stabilized

6. Take stabilized data
7. Ack data taken

9. Knowing data removed,
signal transfer
completed and free the
bus



Synchronous Timing

* Fixed clock pulses
* Steps:
1. First data should be stabilized on the
data lines

2. Master uses a data-ready pulse to
initiate the data transfer

3. Slave uses a data-accept pulse to signal
completion of the information transfer
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{a) Synchronous bus timing with fived-length clock signais for all devices



Advantages:
1. simple to control
2. requires less control circuitary
3. cost is less

Disadvantages:

1. suitable for connecting devices having
relatively same speed otherwise, slower
device will slow down the entire bus operation



Asynchronous Timing

* Based on a handshaking or interlocking mechanism
* No fixed clock cycle is needed

* Data-ready, data-accept

Rising Edge:

1. In master, the data ready signal triggers the data-accept
signal of slave indicates data transfer

Trailing Edge:

In master, the data-ready signal triggers the data-accept
signal of slave indicates the removal of data from the bus

e Adv: variable length clock signals in different speed
 Fast and slow devices can be connected
* flexibility
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(b) Asynchronous bus timing using a four-edge handshaking (intedocking
with variable length signals for different speed devices.



Arbitration, Transaction and Interrupt

* Process of selecting the next bus master is
called arbitration

* Types
Central arbitration
Distributed arbitration



Central Arbitration

 Each master can send request
* All requests share the same bus-request line
* Allocation is based on the priority

* Adv: Simplicity
Additional devices can be added
Disadv: Fixed priority
Slowness



gu—':nr Master 1 Master 2 (—ae ——— s Master n
Central = [ = =
Arbitar Request
e
Bus Busy
o o T
Datla Transfer Bus
{a) Daisy-chained bus arbitration
Bus
Request i Il

bs ] J

{b) Bus transaction timing

Fig. 5.4 Central bus arbitration using shared requests and daisy-chained bus



Il. Independent Requests and Grants

It is also possible to have independent multiple bus-request and bus-grant signal
lines for each potential master,
In this scheme, no daisy-chaining is used. 5tll we have a common central arbiter.

Fig. 6.6, shows an independent requests with a central arbiter.

Advantages of this
scheme are as follows :
1. More flexibility
15 provided hy

bus lines,

2. Faster arbitration
as compared to
daisy-chaining.

Disadvantages of

this scheme

Large number of

arbitration lines are re-
quired.

Cantral
bus
ariifeEr

Measber 1 Master2 | ---| Masler2
BR, | [ <™ 1<
BG,
-+
: BR,,
BG,,
Busy bus
o T S oy T
Data transler bus >

Fig. 6.6. Independent Requests method,



Distributed Arbitration

Each master is equipped with its own arbiter
Each arbiter has arbitration number

Arbitration number is used to resolve the
arbitration competition

When two or more compete for the
arbitration, winner is high arbitration number




e, e e~
< Data Transfer Bus >

Legends: BG (Bus grant) BB (Bus busy) AN (Arbliration number)
(b) Using distritated arbdars




Transaction Modes

* Address-only transfer
— Consists of an address transfer followed by no data.

 Compelled data transfer

— Consists of an address transfer followed by a block of
one or more data transfer to one or more contiguous

addresses.

e Packet data transfer

— Consists of an address transfer followed by a fixed
length block of data transfers (packet) from a set of
contiguous addresses.



Data transfers and priority interrupts handling are two classes of operations
regularly performed on a bus, A bus transaction consists of a request followed by a
response. A connected transaction is used to canmy out a master’s request and a
slave’s response in a single bus transaction. A split transaction splits the request and
response into separate bus transactions.



Interrupt Mechanisms

* |tis arequest from I/O or other devices to a
processor for service or attention

* Priority interrupt bus is used to pass the
interrupt signals

* The interrupter must provide status and ID
information



Futurebus+ Goals

* Open bus standard to support:
— 64 bit address space

— Throughput required by multi-RISC or future
generations of multiprocessor architectures

* Expandable or scalable

* Independent of particular architectures and
processor technologies

EENG-630 Chapter 5
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Standard Requirements

Independence for an open standard
Asynchronous timing protocol
Optional packet protocol
Distributed arbitration protocols

Support of high reliability and fault tolerant
applications

Ability to lock modules w/o deadlock or
livelock
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Standard Requirements

Circuit-switched and split transaction
protocols

Support of real-time mission critical
computations w/multiple priority levels

32 or 64 bit addressing
Direct support of snoopy cache-based procs.
Compatible message passing protocols

EENG-630 Chapter 5
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Futurebus+ Signal Lines

Information (150 — 306)
Synchronization (7)
Bus arbitration (18)

Handshake (6)

EENG-630 Chapter 5
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Information Lines

64 address lines multiplexed with lower order 64
data lines

Data path can be up to 256 bits wide

Tag lines extend address/data modes (opt)
Command lines carry info from master

Status lines used by slaves to respond

Capability lines to declare special bus transactions
Parity check lines for protection

EENG-630 Chapter 5

35



Synchronization Lines

* Coordinate exchange of address, command,
capability status and data

* Address/data handshake lines used by both
master and slaves

e Bus tenure line used to coordinate transfer of
bus control

EENG-630 Chapter 5
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Arbitration and Misc. Lines

Arbitration bus lines carry a number to signify
precedence of competitors

Central arbitration lines for central bus control

Geographical lines for slot addresses
Additional lines for utility, clock, and power

connections

EENG-630 Chapter 5
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Cache Memory Organization



Inventor of Cache memory

* M. V. Wilkes, “Slave Memories and Dynamic Storage Allocation,”
* |EEE Transactions on Electronic Computers, vol. EC-14, no. 2,
* pp-270-271, April 1965.



Cache Memory Organization

Capacity
Access Time
Cost

CPU Registers
100s Bytes
<10s ns

Cache

K Bytes
10-100 ns
1-0.1 cents/bit

Main Memory
M Bytes
200ns- 500ns
$.0001-.00001 cents /bit
Disk
G Bytes, 10 ms
(10,000,000 ns)

-5 -6
10 -10 cents/bit

Tape
infinite
sec-min
10 rH

Registers

A

Instr. Operands

Staging
Xfer Unit

prog./compiler

1-8 bytes
Cache
Block cache cntl
ocks 8-128 bytes
Memory
A os
Pages 4K-16K bytes
v
Disk
4 Fil user/operator
les Mbytes
v
Tape

faster

A

A

Larger



words

Processor does all memory operations with
cache.

Miss — If requested word is not in cache, a
block of words containing the requested word
is brought to cache, and then the processor
request is completed.

Hit — If the requested word is in cache, read or
write operation is performed directly in cache,
without accessing main memory.

Block — minimum amount of data transferred
between cache and main memory.



Cache addressing models



Physical Address Caches

* When a cache is accessed with a physical
memory address

Ex: VAX8600, Intel i486

* Data is written through the memory
immediately via write-through(WT) cache

* Delayed until block replacement by using a
write-back (WB) cache
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{b) Splik caches accessed by physical address in the Sikcon Graphics workstation

Fig. 5.7 Physical address models for unified and split caches



Virtual Address Caches

* When a cache is indexed or tagged with the
virtual address

Ex: Intel i486
Adv: Accessing is faster
Efficiency is high



PA, Captions:

hLa) MMU ————= V= Virtual address
Main P = Physical addross
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Fig. 5.8 Virtual address models for unified and split. caches (Courtesy of Intel
Corporation, 198%9)



Aliasing Problem

Different logically addressed data have the
same index/tag in the cache

Confusion if two or more processors access
the same physical cache location

Flush cache when aliasing occurs, but leads to
slowdown

Apply special tagging with a process key or
with a physical address



Cache Mapping

e The transfer of information from main

memory to cache memory is conducted in
units of cache blocks

* Four block placement schemes:
a. Direct-mapping cache
b. Fully-associative cache
c. Set Associative cache
d. Sector cache



Fully associative: Direct mapped:
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anywhase inset O
(12 mod 4)
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Block Placement Schemes

Performance depends upon cache access patterns,
organization, and management policy

Blocks in caches are block frames(_B;), and blocks in
main memory (B;)

B, (i<m), B; (i < n), n<<m, n=2°, m=2’

Each block has b words b=2%, for cache total of
mb=2""" words, main memory of nb= 25" words
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Cache Design Parameters

In practice, the two parameters n and m differ by at least two to three orders of
magnitude. A typical cache block has 32 bytes corresponding to eight 32-bit words.
Thus w = 3 bits if the machine is word-addressable. If the machine is byte-

addressable, then w = 5 bits.

Consider a cache with 64 Kbytes. This implies m = 2'! = 2048 block frames with

r = 11 bits. consider a main memory with 32 Mbytes. Thus n = 22? blocks with s =
20 bits, and the memory address needs s + w = 20 + 3 = 23 bits for word addressing

and 25 bits for byte addressing. In this case, 25 = 29 = 512 blocks are possible
candidates to be mapped into a single block frame in a direct-mapping cache.



Direct Mapping Cache

Direct mapping of n/m memory blocks to one
olock frame in the cache

Placement is by using modulo-m function

B: — B, if i=jmod m

Unique block frame B; that each B, loads into.
Simplest organization to implement

No way to implement replacement policy.
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Figure 5.10 Direct-mapping cache organization and a mapping example. 53



Direct Mapping Cache

* Advantages * Disadvantages
— Simple hardware — Rigid mapping
— No associative search — Poorer hit ratio
— No page replacement — Prohibits parallel virtual
policy address translation
— Lower cost — Use larger cache size
— Higher speed with more block frames

to avoid contention

EENG-630 Chapter 5
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Fully Associative Cache

Each block in main memory can be placed in
any of the available block frames

s-bit tag needed in each cache block (s > r)

An m-way associative search requires the tag
to be compared w/ all cache block tags

Use an associative memory to achieve a
parallel comparison w/all tags concurrently

EENG-630 Chapter 5
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(b) Every block is mapped to any of the four block frames
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Figure 5.11 Fully associative cache organization and a mapping example.



Fully Associative Caches

* Advantages: * Disadvantages:

— Offers most flexibility in — Higher hardware cost
mapping cache blocks — Only moderate size

— Higher hit ratio cache

— Allows better block — Expensive search
replacement policy with process
reduced block
contention

EENG-630 Chapter 5
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Set Associative Caches

In a k-way associative cahe, the m cache block
frames are divided into v=m/k sets, with k
blocks per set

Each set is identified by a d-bit set number
— y=2d

Compare the tag w/the k tags w/in the
identified set

B, — B, € S;if j(modv)=i
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(b) Mapping cache blocks in a two-way associative cache with four sets

Figure 5.12 Set-associative cache organization and a two-way associative mapping
example.
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Sector Mapping Cache

Partition cache and main memory into fixed
size sectors then use fully associative search

Use sector tags for search and block fields
within sector to find block

Only missing block loaded for a miss

The ith block in a sector placed into the th
block frame in a destined sector frame

Attach a valid/invalid bit to block frames

EENG-630 Chapter 5
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Figure 5.13 A four-way sector mapping cache organization.



Cache Performance Issues

Cycle count: # of m/c cycles needed for cache access,
update, and coherence

Hit ratio: how effectively the cache can reduce the
overall memory access time

Program trace driven simulation: present snapshots
of program behavior and cache responses

Analytical modeling: provide insight into the
underlying processes
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Cycle Counts

Cache speed affected by underlying static or
dynamic RAM technology, organization, and
hit ratios

Write-thru/write-back policies affect count

Cache size, block size, set number, and
associativity affect count

Directly related to hit ratio
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Hit Ratio

» Affected by cache size and block size
* |ncreases w.r.t. increasing cache size

* Limited cache size, initial loading, and changes
in locality prevent 100% hit ratio
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Effect of Block Size

With fixed cache size, block size has impact

As block size increases, hit ratio improves due
to spatial locality

Peaks at optimum block size, then decreases

If too large, many words in cache not used

EENG-630 Chapter 5

65



A Cycle count

Cache size, sat number, associativity, or block size

(3) The total cycle count for cache access (Courtesy of S. A. Przybylski; reprinted with

permission from Clache

F

and Memory Hierarchy Design, Morgan Kaufmann Publishers, 1990)

h Hit ratio

Cache size (bytes)
>

(b) Hit ratio versus cache size

M Hit Ratic (with fixed cache siza)

Figure 5.14

Block size (bytes)

{c) Hit ratio versus block size

Cache performance versus design parameters used.
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5.3 Shared memory organization



In computer science, shared memory is memory that may be
simultaneously accessed by multiple programs with an intent to
provide communication among them or avoid redundant copies.

Shared memory is an efficient means of passing data between
programs. Depending on context, programs may run on a single
processor or on multiple separate processors.

/ System Bus or | Crossbar Switch /

Memory



Characteristics of shared memory systems

Any processor can directly reference any memory
location.

Communication occurs implicitly as result of
oads and stores.

| ocation of data in memory is transparent to the
orogrammer.

nherently provided on wide range of platforms.

Memory may be physically distributed among
pProcessors.
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Interleaved Memory Organization

* Goal is to close the speed gap b/t CPU/cache
and main memory access

* Provides higher b/w for pipelined access of
contiguous memory locations

EENG-630 Chapter 5
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Memory Interleaving

Main memory has multiple modules
connected to system bus or n/w

Can present different addresses to different
modules for parallel/pipelined access

m=29 modules, w/ w= 2? words
Varying linear address assighnments
Have random and block accesses
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Addressing Formats

* Low-order interleaving: spread contiguous
locations across modules horizontally

— Lower a bits identify module, b for word
— Supports block access in pipeline fashion

* High-order: contiguous locations within same
module

— Higher a bits identify module, b for word
— Cannot support block access

EENG-630 Chapter 5
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(b) High-order m-way interleaving
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Two interleaved memary organizations with m = 2% modules and w = 2” words per module

An eight-way interleaved memory (with m = 8 and w =8 and thus a = b= 3)



Ss2

Pipelined Memory Access

Overlap access of m memory modules
Major cycle divided into m minor cycles

T = 0/m m=degree of interleaving

O=total time to complete access of one word
t=actual time to produce one word

Total block access time is 20

Effective access time of each word is t

EENG-630 Chapter 5
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Memory address Register (8 bits)

i ] t 1 1t |
Word address Module address
Mg M, Mo M My Mg Mg M,
) 1 2 | 3 | 4 5 6 7 —
8 o 10 11 12 13 14 15
—1 16 17 18 19 20 21 22 23
24 25 26 27 238 28 30 31
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55
56 57 58 59 80 61 62 83
e s i
7 | |
L Data ] Memary Data Register

(a) Eight-way low-order interleaving (absolute address shown in each

mermnory word)

-3

@

s

dimmg
DR S

z
—
B

rm s msAEEEE .-

& = Major cycle
T = B/m = minor cycle

m = degree of interleaving

o —

28

> Time

{b) Pipelined access of eight consecutive words in a C-access memory

Figure 5.16 Multiway interleaved memory organization and the C-access timing

chart.
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Memory Bandwidth

Memory b/w B of m-way interleaved memory
Is upper bounded by m and lower bounded by
1

Hellerman estimate of Bis z=w*~ [m

— 16 modules then B is 4 times faster than single
module.

Based on single processor system, conflicts

reduce it further g ( m_1j
1+

Avg. time to access {* [ = z

one element in a vector n
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Fault Tolerance

Fault Tolerance High- and low-order interleaving can be combined to yield many different interleaved
memory organizations. Sequential addresses are assigned in the high-order interleaved memory in each
memory module,

This makes it casier to isolate faulty memory modules in a memory bank of m memory modules. When
one module failure is detected, the remaining modules can still be used by opening a window in the address
space. This fault isolation cannot be carried out in a low-order interleaved memory, in which a module failure
may paralyze the entire memory bank. Thus low-order interleaving memory is not fault-tolerant.



Memory address Register

6 bits

(a) Four-way interleaving within each memory bank

Memory address Register (6 bits)

Bank address T ! L Module address
| Word address ‘_l
Mp My Mz Ma My Mg Mg M7
0 1 2 | 3 32 33 | | 34 35
4 5 6 7 36 37 38 39
8 9 10 11 40 41 42 43
12 13 14 15 44 45 48 a7 Higher degree of
16 17 18 18 43 49 50 51 ) ]
e T 2 > = =3 =4 =5 interleaving, the
24 25 26 27 56 57 58 59 higher the
28 28 30 31 60 61 62 83 )
= = — == — = potential memory
o Bank 0 Bank 1

bandwidth if the
system is fault-
free.

Bank widlises Module address
MQ M1 . Mg Mg 7 M‘, M MG_ M'T “—j
Q 1 18 17 32 33 48 43
2 3 18 19 34 35 50 &1
4 5 20 21 36 37 52 53
-] 7 22 23 38 39 54 55
8 2] 24 25 40 41 &6 57
10 11 26 27 42 43 538 59
12 13 28 29 44 45 S0 61
14 15 30 31 46 47 g2 €3
= T e e ‘ G M
== Bank 0 Bank 1 Bank 2 Bank 3

(b) Two-way interleaving within each memory bank

Figure 5.17 Bandwidth analysis of two alternative interleaved memory organiza-

tions over eight memory modules. (Absolute address shown in each memory

bank.)
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Memory Allocation Schemes

* Virtual memory allows many s/w processes
time-shared use of main memory

* Memory manager handles the swapping

* |t monitors amount of available main memory
and decides which processes should reside
and which to remove
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Allocation Policies

* Memory swapping: process of moving blocks
of data between memory levels

* Nonpreemptive allocation: if full, then swaps
out some of the allocated processes

— Easier to implement, less efficient

* Preemptive:has freedom to preempt an
executing process

— More complex, expensive, and flexible

EENG-630 Chapter 5
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Allocation Policies

* Local allocation: considers only the resident
working set of the faulty process

— Used by most computers

* Global allocation: considers the history of the
working sets of all resident processes in
making a swapping decision

EENG-630 Chapter 5
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Swapping Systems

Allow swapping only at entire process level

Swap device: configurable section of a disk set

aside for temp storage of data swapped
Swap space: portion of disk set aside

Depending on system, may swap entire
processes only, or the necessary pages

EENG-630 Chapter 5
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Main Memory Disk Memory

of 3
2Kl (BSK}I
: .
400K (16 K .
s Swap -
H space .
800K ()
801K (1 K .
. : /
H .
1023k . T A
L7 R} {# M}

(a) Moving a process (or pages) onto the swap space on a disk

Main Memory Disk Memory
of "
$
4Kk| (16 K)
L ]
5 .
L ]
a65K| (683K) f;‘;ac‘; »
. »
= L J
700K _(17 K)
E [ J
1022k| (1K) :
1023K (4 M)

(b) Swapping in a process {or pages) to the memory

Figure 5.18 The concept of memory swapping in a virtual memory hierarchy (vir-
tual page addresses are identified by numbers within parentheses, assuming a
page size of 1K words).
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Swapping in UNIX

e System calls that result in a swap:
— Allocation of space for child process being created
— Increase in size of a process address space
— Increased space demand by stack for a process

— Demand for space by a returning process swapped
out previously

* Special process 0 is the swapper
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Demand Paging Systems

Allows only pages to be transferred b/t main
memory and swap device

Pages are brought in only on demand

Allows process address space to be larger than
physical address space

Offers flexibility to dynamically accommodate
large # of processes in physical memory on
time-sharing basis
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Working Sets

* Set of pages referenced by the process during
last n memory refs (n=window size)

* Only working sets of active processes are
resident in memory

Example 5.8 Working sets generated with a page trace

In the following page trace, the successive contents of the working set of a
process are shown for a window of size n = 3:

Pagetrace 7 24 7 15 24 24 &8 1 1 8 9 24 8 1
Workingset 7 ¥ 7 v T 7 8 8 8 8 8 8 8 8
24 24 24 24 24 24 24 24 24 9 9 9 1

15 15 15 15 1 1 1 1 24 24 24

EENG-630 Chapter 5
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Other Policies

* Hybrid memory systems combine advantages
of swapping and demand paging

* Anticipatory paging prefetches pages based
on anticipation

— Difficult to implement

EENG-630 Chapter 5
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Memory Consistency/Inconsistency

* Memory inconsistency: when memory access
order differs from program execution order

* Sequential consistency: memory accesses (|
and D) consistent with program execution
order

EENG-630 Chapter 5 89



Memory Consistency Issues

 Memory model: behavior of a shared memory
system as observed by processors

* Choosing a memory model — compromise b/t
a strong model minimally restricting s/w and a
weak model offering efficient implementation

* Primitive memory ops: load, store, swap

EENG-630 Chapter 5 90



Event Orderings

Processes: concurrent instruction streams executing
on different processors

Consistency models specify the order by which
events from one process should be observed by
another

Event ordering helps determine if a memory event is
legal for concurrent accesses

Program order: order by which memory access occur
for execution of a single process, w/o any reordering

EENG-630 Chapter 5 91



Z P4 P2 Pn
in K7
. 6 KB
. 5 J5 K5
Prograrn ] PO a
Order S 3 < =5 K3
(PO) 3 | > PO o <
2 1 J1i R — 1
1
Switch
Mg;gg:y Memory Shared memory system
system (A globail memory order for all processors)

(a} Sequential consistency in

SISD % {b) Event ordering in an MIMD system
an system

Processor 1 Processor 2 Processor 3
&. A = 1 c. B = 1 . T = 1
b. Print B,C d. Print A,C f., Print A,B

Shared memory

A, B, C are shared writable variables in memory
(Initially, A=B=C=0)

(c) A parallel program for Example 5.9

Figure 5.19 The access ordering of memory events in a uniprocessor and in a mul-
tiprocessor, respectively. (Courtesy of Dubois and Briggs, Tutorial Notes on
Shared- Memory Multiprocessors, Int. Symp. Computer Arch., May 1990}
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Primitive Memory Operations

* Load by P, complete wrt P, when issue of a store to

same location by P, does not affect value returned by
load

* Store by P, complete wrt P, when an issued load to
same address by P, returns the value by this store

* Load is globally performed if it is performed wrt all
processors and if the store that is the source of the
returned value has been performed wrt to all
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Difficulty in Maintaining Correctness
on an MIMD

* |f no synch. among instruction streams, then
large # of different instruction interleavings

* Could change execution order, leading to more
possibilities

e |If accesses are not atomic, then different
processors can observe different interleavings
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Atomicity

* Categories of memory behavior:

— Program order preserved and uniform observation
sequence by all processors

— Out of program order allowed and uniform
observation sequence by all processors

— Out of program order allowed and nonuniform
sequences observed by different processors
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Atomicity

* Atomic memory accesses: memory updates
are known to all processors at the same time

* Non-atomic: having individual program orders
that conform is not a sufficient condition for
sequential consistency

— Multiprocessor cannot be strongly ordered
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Lamport’s Definition of Sequential
Consistency

* A multiprocessor system is sequentially
consistent if the result of any execution is the
same as if the operations of all the processors
were executed in some sequential order, and
the operations of each individual processor

appear in this sequence in the order specified
by its program
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Sequential Consistency

e Sufficient conditions:

— Before a load is allowed to perform wrt any other
processor, all previous loads must be globally
performed and all previous stores must be
performed wrt all processors

— Before a store is allowed to perform wrt any other
processor, all previous loads must be globally
performed and all previous stores must be
performed wrt to all processors
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Sequential Consistency Axioms

The memory order conforms to a total binary order in
which shared memory is accessed in real time over all
loads/stores

A load always returns the value written by the latest
store to the same location

If 2 ops appear in particular program order, same
memory order

Swap op is atomic with respect to stores. No other
store can intervene b/t load and store parts of swap

All stores and swaps must eventually terminate

EENG-630 Chapter 5
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Implementation Considerations

A single port s/w services one op at a time

Order in which s/w is thrown determines
global order of memory access ops

Strong ordering preserves the program order
in all processors

Sequential consistency model leads to poor
memory performance due to the imposed
strong ordering of memory events
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Weak Consistency Models

* Multiprocessor model may range from strong
(sequential) consistency to various degrees of
weak consistency

e Two models considered
— DSB model
— TSO model
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DSB Model

* All previous synch. accesses performed before
load or store allowed

* All previous load/stores performed before a
synch. allowed

e Synch. accesses sequentially consistent with
respect to one another
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TSO Model

Load returns latest store result

Memory order is a total binary relation over all pairs
of store ops

If 2 stores appear in part. program order, same
memory order

If a mem op follows a load in prog order, must also
follow load in mem order

Swap op atomic with respect to other stores — no
other store can interleave b/t load/store parts of
swap

All stores/swaps must eventually terminate
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In this chapter...

 Linear Pipeline Processors

* Non-linear Pipeline Processors
* Instruction Pipeline Design

* Arithmetic Pipeline Design

« Superscalar Pipeline Design

® Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University
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LINEAR PIPELINE PROCESSORS

Linear Pipeline Processor
o (Definition)

Models of Linear Pipeline

o Synchronous Model
o Asynchronous Model
o (Corresponding reservation tables)

Clocking and Timing Control
o Clock Cycle

Pipeline Frequency

Clock skewing

Flow-through delay

Speedup, Efficiency and Throughput

Optimal number of Stages and Performance-Cost Ratio (PCR)

O O O O

® Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University ®3



Input c:> :)')> ——— :> :> Output
Ready ———» Siq Read - S2 e -

Sk —= Ready
Ack | - ACK - ACk |- Ack
(a) An asynchronous pipeline model
L ki L L L

Inpu Output
[p:}"> Sy ::> So :() :::::) Sk _—_(> ::>
i P P ¥ P

Clock

T

T ::: Tm :{ el =<

(b) A synchronous pipeline model

—— = Time (clock cycles)
1 2 3 <1

Captions:
S; = stage /
L = Latch
T = Clock period
Stages - 5 Tm = Maxi::\um stage delay
d = Latch delay
S X Ack = Acknowledge signal.

(c) Reservation table of a four-stage linear pipeline

Fig. 6.1 Two models of linear pipeline units and the corresponding reservation table



a
@]

8 k = 10 stages

Speedup Factor

Kk = 6 stages

1 2 s 8 16 32 64 128 r;';r
MNo. of operations

(a) Speedup factor as a function of the number of operations (Eq. 6.5)

-

Performance Cost Ratio

= i
Kp No. of stages

(O ptimal)

(b)) Optimal number of pipeline stages (Eqs. 6.6 and 6.7)

Fig. 6.2 Speedup factors and the optimal number of pipeline stages for a linear pipeline unit



NON-LINEAR PIPELINE PROCESSORS

» Dynamic Pipeline
o Static v/s Dynamic Pipeline
o Streamline connection, feed-forward connection and feedback connection

 Reservation and Latency Analysis

o Reservation tables
o Evaluation time

 Latency Analysis
o Latency
o Collision
o Forbidden latencies
o Latency Sequence, Latency Cycle and Average Latency

® Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University LJ)



NON-LINEAR PIPELINE PROCESSORS

Qutput Y
Input ———» s, > 53 tp

1 [

(a) A three-stage pipeline

At.'?-*
Yy

— Time — Time
1 2 3 4 5 6 7 8 1 2 3 4 5 6
Sq| X X X Sql Y Y
Stages S, X X Stages S, Y
S3 X X X S3 Y Y Y

(b) Reservation table for function X (c) Reservation table for function Y

Fig. 6.3 A dynamic pipeline with feed forward and feedback connections for two different functions
o7
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NON-LINEAR PIPELINE PROCESSORS

Stages Sz X1 X-“ XZ X2, X3 X3. X4 X4 en e
S4 X ¥oce I Mo, ¥, s X, Xa, X4

(a) Collision with scheduling latency 2

— Time
1 2 3 4 5 6 7 8 9 10N
Sq| X4 X1, Xo X4
Stages S X4 X4 X X cee

(b) Collision with scheduling latency 5

Fig. 6.4 Collisions with forbidden latencies 2 and 5 in using the pipeline in Fig. 6.3 to evaluate the function X

® Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University e8



| «—— Cycle repeats ————— -}« ———

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

s, [>X X5 AN EAEEEE X [ X4 [Xa[Xa[Xs[Xe
S, X4 [ X X4 %5 X5 [ X, [ X5 Xa Xg
S, CAEHE? X4 [X5 X5 [ X4 [X5 X

(a) Latency cycle (1, 8)=1,8, 1,8, 1,8, ...

., with an average latency of 4.5

Cwvycle repeats

1 2 3 4 5 6 ¥ 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Sq1%X4 Ko X4 Kz | X X | Xg4 | Ko | Kz | Kg | Xz | X4 | XK | Kg | K| X7 | X
So X4 X4 %2 Xo | XK Xa | X4 XalXs Xg | Xg Xe|X7| =
S, X4 KK | K4 | Ko | XKg | Ko | Ka [ X4 | Kz | Ka | Ks | Ka | Ks | Kg | Ks | Kg

(b) Latency cycle (3) = 3, 3, 3, 3, ..., with an average latency of 3
Cwycle repeats

1 2 3 4 5 6 ¥ 8 9 10 11 12 13 14 15 16 17 18 19 20 21
S41 %4 X412 X4 KXo | Kg | Xs Xa| X4 X3
So X1 X4 Ko Xo X X Xal =
S X1 X1 X1 Ko Ko Ko Xa | XKs Ko Ko

(c) Latency cycle (6) = 6, 6, 6, 6, ...

Fig. 6.5

. with an average latency of 6

Three valid latency cycles for the evaluation of function X



INSTRUCTION PIPELINE DESIGN

Instruction Execution Phases

o E.g. Fetch, Decode, Issue, Execute, Write-back
o In-order Instruction issuing and Reordered Instruction issuing
« Eg. X=Y+Z,A=BxC

Mechanisms/Design Issues for Instruction Pipelining

o Pre-fetch Buffers

o Multiple Functional Units
o Internal Data Forwarding
o Hazard Avoidance

Dynamic Scheduling
Branch Handling Techniques

® Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University
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Time

1234567 8 91011121314151617181920212223
R1 < Mem(Y) [FID]ITETEJE]W
R2 < Mem(Z) FID[ I [EJE[E]W
R3 « (R1) + (R2) F[D | E[W
Mem(x) < (R3) F D] | |[E|E|E|W
R4 < Mem(B) Dl I|E|E|E]|w
R5 « Mem(C) FID[ I |E[E|E[W
R6 « (R4)*(R5) F|D | [E[E[E]wW
Mem(A) < (R6) hl E|E]E]W]
(b) In-order instruction issuing
> Time
1234567 8 91011121314151617
Rl Mem(Y)  [FIp[I[E[E[E[W
R2 < Mem(Z) FID[ 1 [E[E[E|wW
R4 < Mem(B) FID[ I [E[E[Ew
RS« Mem(C) FID[I[E[E[E|w
R3 « (R1)*(R2) FIONM  [E[E[E]wW
Mem(A) < (R6) FIDI ' [E[E[E]wW]

(c) Reordered instruction issuing

Fig. 6.9 Pipelined execution of X =Y + Z and A = B X C (Courtesy of James Smith; reprinted with permission
from IEEE Computer, July 1989)



INSTRUCTION PIPELINE DESIGN

Write-
- FegCh —;-DeCDOde > Isslue _’EXGECU le_’EerCU te—bEerCUte—’ Back >
W

(a) A seven-stage instruction pipeline

» Fetch: fetches instructions from memory; ideally one per cycle

» Decode: reveals instruction operations to be performed and identifies the resources needed
» Issue: reserves the resources and reads the operands from registers

» Execute: actual processing of operations as indicated by instruction

»  Write Back: writing results into the registers

® Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University ®]2



INSTRUCTION PIPELINE DESIGN

» Time
12345678 91011121314151617181920212223

R1 « Mem(Y) FID 1 TETETEIW
E|E|E

R2 < Mem(Z) FlD
R3 « (R1) + (R2) F
Mem(x) « (R3)
R4 « Mem(B)
R5 « Mem(C)
R6 « (R4)*(R5)
Mem(A) < (R6)

|
D
F

W
|
D

mMmM|O|—|m

W
E
|
D
F

(b) In-order instruction issuing
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INSTRUCTION PIPELINE DESIGN

mim|m|S \:g

MO|—|m|m|S

8 91011121314151617

R1«— Mem(Y)
R2 « Mem(Z)
R4 «— Mem(B)
RS « Mem(C)
R3 « (R1)+(R2)
R6 « (R4)*(R5)
Mem(x) « (R3)
Mem(A) < (R6) =

m| =
Mol N

mMm|O|—
mMOoO|—|m| &
MO|=|m|m| o ¥
MO|—=|mm|m| & 4

W
E
E

W
=
I
D

—|m{m

(c) Reordered instruction issuing
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INSTRUCTION PIPELINE DESIGN

Mechanisms/Design Issues of Instruction Pipeline

* Pre-fetch Buffers

o Sequential Buffers
o Target Buffers Sequential instructions indicated by program counter

Loop Buffers T
o > | Seq. Buffer 1

Seq. Buffer 2F|"

Fetch —>|

Memory |— Unit Y coe >

Target Buffer 1

—

/ Target Buffer 2

Instruction Pipeline

Instructions from branched locations

Fig.6.11 The use of sequential and target buffers
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INSTRUCTION PIPELINE DESIGN

Mechanisms/Design Issues of Instruction Pipeline

 Multiple Functional Units rstrcton fom Hemary

o Reservation Station and Tags Register
) Instruction Fetch Unit File
o Slow-station as Bottleneck stage

@
[-]

« Subdivision of Pipeline Bottleneck stage Tog _ E
) ) . ) Unit Decode and Issue Units ——: :
* Replication of Pipeline Bottleneck stage : 2[a] [s]:
" D) o e '
 (Example to be discussed) v
\
R ti
comevation gs | [ rs | | Rs RS | = R;;”gm
T S S T
Functional
Unite | Fu FU FU |ees| FU Memory
' ! Data

Results Bus

Fig. 6.12 A pipelined processor with multiple functional units and distributed reservation stations supported
by tagging (Courtesy of G. Sohi; reprinted with permission from [EEE Transactions on Computers, March
1990)
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INSTRUCTION PIPELINE DESIGN

Mechanisms/Design Issues of Instruction Pipeline

Instruction from Memory

l

Register
Instruction Fetch Unit File
(- - - -
" "
1 '
v : B T :
Tag . 1 '
- — |
Unit Decode and Issue Units - :
I A S |
o T 1
y
v 3 v v i
Reservation Load
Stations ni alhiie RS e Registers
v v v ¥ I
Fur)clional FU FU FU |leee!| FU
Units Memory
¥ v v ) 4 Data

Results Bus

Fig. 6.12 A pipelined processor with multiple functional units and distributed reservation stations supported
by tagging (Courtesy of G. Sohi; reprinted with permission from IEEE Transactions on Computers, March
1990)
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INSTRUCTION PIPELINE DESIGN

Mechanisms/Design Issues of Instruction Pipeline

* Internal Forwarding and Register Tagging

o Internal Forwarding:

A ‘“short-circuit” technique to replace unnecessary memory accesses by register-register
transfers in a sequence of fetch-arithmetic-store operations

o Register Tagging:
* Use of tagged registers , buffers and reservation stations, for exploiting concurrent activities
among multiple arithmetic units
o Store-Fetch Forwarding
« (M €R1,R2 < M) replaced by (M < R1, R2 €< R1)
o Fetch-Fetch Forwarding
* (R1 €M, R2 € M) replaced by (RT € M, R2 < R1)
o Store-Store Overwriting
« (M €R1,M €< R2) replaced by (M €< R2)

® Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University ®]8



INSTRUCTION PIPELINE DESIGN

Mechanisms/Design Issues of Instruction Pipeline

* Internal Forwarding and Register Tagging

M | Memory M | Memory M | Memory M | Memory
Access Access Access Access
Unit Unit Unit Unit
R1 % % R2 R1 / R2 R1 g % R2 R1 / R2
[ — | | — |
STOM,R1 LDR2,M STOM,R1 MOVE R2, R1 LD R1, M LD R, M2 LD R1,M MOVE R2, R1
(a) Store-load forwarding (b) Load-load forwarding

Fig. 6.13 Internal data forwarding by replacing memory-access operations with register transfer operations
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INSTRUCTION PIPELINE DESIGN

Mechanisms/Design Issues of Instruction Pipeline

* Internal Forwarding and Register Tagging

i

Lo

R1l 1 [ 1R2

Multiply Unit Iy: R3 & (R1)* (R2)
¥ 1;: R3 « (R1)* (R2) I3 : R4 « (R1) * (R2)

R3 E2=) I, : R4 « (R3) 153 1 RS « (R4) + (R5)
] .

R4 3: RS < (RS) + (R4) Iy and 15 can be executed

simultaneously with internal
A dd Unit data forwarding.

(b) With internal data forwarding
(a) Without data forwarding
Fig. 6.14 Internal data forwarding for implementing the dot-product operation
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INSTRUCTION PIPELINE DESIGN

Mechanisms/Design Issues of Instruction Pipeline

* Hazard Detection and Avoidance

Domain or Input Set of an instruction
Range or Output Set of an instruction

Data Hazards: RAW, WAR and WAW
Resolution using Register Renaming approach

@ (write) /" rq) @ Write RO
D(J) (Read) @ @ (Write)y —\ RW)

(a) Read-after-Write (RAW) hazard (b) Write-after-Write (WAW) hazard

@: (REEC') D(I)

(c) Write-after-Read (WAR) hazard

@)
@)
@)
©)

Fig. 6.15 Possible hazards between read and write operations in an instruction pipeline (instruction | is ahead
of instruction ] in proegram order)

® Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University e2]



INSTRUCTION PIPELINE DESIGN

Dynamic Instruction Scheduling

* |dea of Static Scheduling

o Compiler based scheduling strategy to resolve Interlocking among instructions

 Dynamic Scheduling

o Tomasulo’s Algorithm (Register-Tagging Scheme)
» Hardware based dependence-resolution

o Scoreboarding Technique
« Scoreboard: the centralized control unit
 Akind of data-driven mechanism

® Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University ®2?



INSTRUCTION PIPELINE DESIGN

Dynamic Instruction Scheduling

R1 «Mem(Y)

R2 «Mem(Z)

R3 «(R1)+(R2)
Mem(x) «(R3)

R1 «Mem(B)

R2 «Mem(C)

R3 «(R1)*(R2)
Mem(A) «(R3)

M| =
Mol N
MO|—~| W

TMO|—=|m| &
mMo|—|m|m| o,

(a) Minimum-register machine code (b) The pipeline schedule

Fig.6.16 Dynamic instruction scheduling using Tomasulo’s algorithm on the processor in Fig. 6.12 (Courtesy of
James Smith; reprinted with permission from IEEE Computer, July 1989)
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INSTRUCTION PIPELINE DESIGN

Dynamic Instruction Scheduling

Write-
back

Write-
back

Write-
back

E|E|w|

W

. Eercute ce® ‘Eercute
Insft;thgélon ~|Decode| _| Issue & . |Execute - e o »|Execute
F D I E E
!f‘///' :
-
-
Scoreboard \ | | Execute ce® |Execute
E E
(a) A CDC 6600-like processor
= Time
1 2 3 4 5 6 7 10 1112 14 16 1819
R1 «Mem(Y) 8 9 13 15 17
|Flplt |E|[E|E]|[w
R2Z2 «—Mem(Z) FIoT T TETETE W
R3 «—(R1)+(R2) FloTt W
Mem(x) «-(R3) FlD]|1 E
R4 «—Mem(B) FID|IT|E|E]|E|[W
R5 «—Mem(C) FIDl1E E [w
R6 «—(R4)"(R5) FlDJ| 1
Mem(A) «-(R6) F|D

(b) The improved schedule from Fig. 6.9b

permission from IEEE Computer, July 1989)
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Fig.6.17 Hardware scoreboarding for dynamic instruction scheduling (Courtesy of James Smith; reprinted with
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INSTRUCTION PIPELINE DESIGN

Branch Handling Techniques

 Branch Taken, Branch Target, Delay Slot
« Effect of Branching

o Parameters:

- k: No. of stages in the pipeline

*n: Total no. of instructions or tasks

°* p: Percentage of Brach instructions over n

G Percentage of successful branch instructions (branch taken) over p.
 b: Delay Slot

T Pipeline Cycle Time

o Branch Penalty = q of (p of n) * bz = pgnbr
o Effective Execution Time:
= [k + (n-1)] = + pgnbz = [k + (n-1) + pgnb]z

® Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University ®25



INSTRUCTION PIPELINE DESIGN

Branch Handling Techniques

« Effect of Branching

o Effective Throughput:

* He=nlTey

Hes = n [ {[k + (n-1) + pgnb]z} = nf/ [k + (n-1) + pgnb]
* As n%lnfinity and b = k-1
"ot = T/ [pa(k-1)+1]
o |If p-0 and q=0 (no branching occurs)
o H*s=f=1lr

o Performance Degradation Factor

* D=1-H"y/f=pq(k-1)/[pq(k-1)+1]

® Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University ®26



Instruction flow

——— Ib+k—1 lb+k-2 L lb+2 lb""’ lb EE—

(a) A k-stage pipeline

Original instruction flow Branch taken

g v

- - . lb+k—1 - - ° lb+2 lb+1 ]b - - -
Moo e
‘\/P Captions:
A delay slot of length k-1 [, = Branch taken
I, = Branch target
k = No. of pipeline stages
T = clock cycle (stage delay)
b = Delay slot size
\ 4
- - - - - - -

lte2 Tter 1t

Branch target
New instruction flow

(b) An instruction stream containing a branch taken

Fig. 6.18 The decision of a branch taken at the last stage of an instruction pipeline causes b = k — 1 previously
loaded instructions to be drained from the pipeline



INSTRUCTION PIPELINE DESIGN

Branch Handling Techniques

 Branch Prediction
o Static Branch Prediction: based on branch code types
o Dynamic Branch prediction: based on recent branch history
- Strategy 1: Predict the branch direction based on information found at decode stage.
« Strategy 2: Use a cache to store target addresses at effective address calculation stage.

« Strategy 3: Use a cache to store target instructions at fetch stage
o Brach Target Buffer Organization

» Delayed Branches

o Adelayed branch of d cycles allows at most d-1 useful instructions to be executed following the
branch taken.

o Execution of these instructions should be independent of branch instruction to achieve a zero
branch penalty

® Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University e 28



INSTRUCTION PIPELINE DESIGN

Branch Handling Techniques

4 ™
o L ] L J
8 8 L ]
o a 8
o J
- AL A J
Y Y Y
Branch Branch Branch
instruction Prediction target
address Statistics address

(a) Branch target buffer organization

Fig. 6.19 Branch history buffer and a state transition diagram used in dynamic branch prediction (Courtesy of
Lee and Smith, IEEE Computer, 1984)
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Delayed branch

Delayed branch

@ ® &

I
E—" 1 2 3
1 2 @ 4 5 6 Ib f d e S
h| f | d ] e]| s 2 delay LI f | d]e | s
1 delay instruction 14| f d e S instructions o f d e S
Ll f ] d] e] s L f | d | e

(a) A delayed branch for 2 cycles when the branch

condition isjresolved at the decode stage

(b) A delayed branch for 3 cycles when the branch

condition ig resolved at the execute stage

Time_
o Delayed branch
I Y
0 1 2 3 4 ® ® @ 8
_% (Branch)lb £ q o S
> 4 f | d | e | s
instructions G| f 3 & S
Y (Target) ;| f d e S

(c) A delayed branch for 4 cycles when the branch
condition i

Fig. 6.20 The concept of delayed branch by moving independent instructions or NOP fillers into the delay slot

of a four-stage pipeline

resolved at the store stagel




ARITHMETIC PIPELINE DESIGN

Computer Arithmetic Operations

* Finite-precision arithmetic
 QOverflow and Underflow
 Fixed-Point operations

o Notations:
« Signed-magnitude, one’s complement and two-complement notation
o Operations:

* Addition: (n bit, n bit) =» (n bit) Sum, 1 bit output carry

* Subtraction: (n bit, n bit) =» (n bit) difference
 Multiplication: (n bit, n bit) =» (2n bit) product

* Division: (2n bit, n bit) =» (n bit) quotient, (n bit) remainder
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ARITHMETIC PIPELINE DESIGN

Computer Arithmetic Operations

. : 0 1 2 8 9 31
* Floating-Point Numbers —— ce s
o X=(m, e) representation T — - N N _
* m: mantissa or fraction Sign Exponent e Mantissa m

* e: exponent with an implied base or radix r.
e Actual Value X=m *r®
o Operations on numbers X = (m,, e,) and Y = (m,, e,)

* Addition: (m, *r*%Y+m,e)
§ Subt'ra.cti0{7: (m, *r*¥Y-m;e)
. Mg{t/pl/cat/on: (m, *m,, e,+e,)

* Division: (m,/ m, e, —e)

» Elementary Functions
o Transcendental functions like: Trigonometric, Exponential, Logarithmic, etc.
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ARITHMETIC PIPELINE DESIGN

Static Arithmetic Pipelines

 Separate units for fixed point operations and floating point operations
 Scalar and Vector Arithmetic Pipelines

 Uni-functional or Static Pipelines

* Arithmetic Pipeline Stages

o Majorly involve hardware to perform: Add and Shift micro-operations
o Addition using: Carry Propagation Adder (CPA) and Carry Save Adder (CSA)
o Shift using: Shift Registers

 Multiplication Pipeline Design
o E.g. To multiply two 8-bit numbers that yield a 16-bit product using CSA and CPA Wallace Tree.
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A B
e.g. n=4

A= 1011 in fn
+) B= 0111

S=10010=A+B \CP’G‘/

t
ou s

(Sum)

(a) An n-bit carry-propagate adder (CPA) which allows either carry
propagation or applies the carry-lookahead technique

X Y zZ

e.g. n=4

X 001011 {” /t” f”

Y = 01010 1

® Z = 11110 1 CRA

sP= 01000 11 fn- fn-

+) C=0111010 b

S=10111 g1 =8"+C=X+Y+Z (Carry (Bitwise
vector) sum)

(b) An n-bit carry-save adder (CSA), where SPis the bitwise sum of X, Y, and £, and
C is a carry vector generated without carry propagation between digits

Fig.6.22 Distinction between a carry-propagate adder (CPA) and a carry-save adder (CSA)



e {e
[ rHy—
18 18
y
S1 Multiplier recoding logic
18 19 110 111412113 114 115
\ 4 4 \ 4 Y Y A\ 4 A\ 4 A 4
L |
18 49 110 11114121413
A\ 4 A 4 A\ 4 \ 4 \ 4 \ 4
N\ CSA s CSA /1 15
s2 10\\ 10 / 13 13\\
X CSA CSA
113 113 115 415
[ y A A 4 r
13~_><13 s
CSA 15
s3 15 15
CSA
116 f’1e
Y y
L i
116 116
y \ 4
N\
S4 \ CPA /
116
! A H—
Captions: i’16
CSA = Carry save adder
CPA = Carry Propagate adder P=AxB

Fig. 6.23 A pipeline unit for fixed-point multiplication of 8-bit integers (The number along each line indicates
the line width.)



ARITHMETIC PIPELINE DESIGN

Multifunctional Arithmetic Pipelines

 Multifunctional Pipeline:

o Static multifunctional pipeline
o Dynamic multifunctional pipeline

« (Case Study: T1/ASC static multifunctional pipeline architecture
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16 InthLuﬁcel:-on Index Regs. |8
Instruction | Instruction
. *| Processing 16 |Base Registers Vector Control
Unit (IPU) Parameter | 8
16| Arithm. Regs. Regs.
Main
Memory

l\\ i ——
Operands
Memory
Buffer
Unit (MBU)
Y A J Y L J k J \ J L J A J
Pipeline Pipeline Pipeline Pipeline
1 2 3 4
PAU L | | I L | L |

Pipeline Arithmetic Units (PAU)

Fig. 6.26 The architecture of the Tl Advanced Scientific Computer (ASC) (Courtesy of Texas Instruments, Inc.)



i !

e
il

Input 51 51 51
¥ I v 1 Y ¥
Exponent |5 = - =
Subtract 2 2 2
F ¥
w h 4 w h 4
Align S3 Sa S3
A
1 h.J l h 4 ‘ F |
Fraction = =
s
W Add ! 4 A W 4
X
e ,,
-
Normalize | Ss| Sg Sg
Y I L = 14
L] IR | 3 o
Fraction s = s
Multiply = G 6
ey ¥
l v L v
i Accumulate| S+ S, S
* v J k. 4 *
Output Sg Sg Sy
R=r{A, B) R=A=B8 L

(a) Pipeline stages and {b) Fixed-point multiplication (c) Floating-point dot product
interconnactions

Fig. 6.27 The multiplication arithmetic pipeline of the Tl Advanced S5cientific Computer and the interstage
connections of two representative functions (Shaded stages are unutilized)



SUPERSCALAR PIPELINE DESIGN

 Pipeline Design Parameters

o Pipeline cycle, Base cycle, Instruction issue rate, Instruction issue Latency, Simple Operation Latency
o ILP to fully utilize the pipeline

» Superscalar Pipeline Structure
« Data and Resource Dependencies
 Pipeline Stalling

 Superscalar Pipeline Scheduling

o In-order Issue and in-order completion
o In-order Issue and out-of-order completion
o Out-of-order Issue and out-of-order completion

Superscalar Performance

® Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University ® 39



SUPERSCALAR PIPELINE DESIGN

Parameter Base Scalar Processor Super Scalar Processor
(degree = K)

Pipeline Cycle 1 (base cycle) K
Instruction Issue Rate 1 K
Instruction Issue Latency 1 1
Simple Operation Latency 1 1
ILP to fully utilize pipeline 1 K
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Execute

stage
! ' 1 Multiplier ' !
Fetch . Decode , - ! Store !
stage ; stage i > m1 m2 | m3 i (writeback) 1
1 1 - 1 1
1 1 1 1

- L Adder >

g ' e - = s ;
From I-cache . : I > al a2 T "
1 1 o 1 1
>~ 2 —] d2 : Logic : '
1 1g T [ - 1
:' - el t L, S92 1
- 1 | 1L 1
| 3 -] d3 . Load , .
1 . 1 1
Lookahead Window ' »| e2 ' :
1 . 1 1

(a) A dual-pipleline, superscalar processor with four functional units in the execution stage and a lookahead window
producing out-of-order issues

1. Load R1, A / R1 < Memory (A) / o o
2. Add R2, R1 /R2<« (R2)+ (R1)/

&
-]
; 13. Add R3, R4 /I R3 «— (R3) + (R4)/ "
g 4. Mul R4, R5 /R4 «+— (R4) * (R5) /
o —_
o I5. Comp R6E / R6 «— (R6)/
I6. Mul R6, R7 / R6 «— (R6) * (R7)/ Flow Anti- Output-dependence,
dependence dependence also flow
dependence

(b) A sample program and its dependence graph, where 12 and I3 share the adder and 14 and 16 share the
multiplier

Fig. 6.28 A two-issue superscalar processor and a sample program for parallel execution



SUPERSCALAR PIPELINE DESIGN

From
D-cache Execute
stage
: : Multiplier : :
Fetch ; Decode [— ! Store '
Stage : Stage : ] m1 m2 m3 :(ertebaCk) :
1 1 [ | 1
| 1
—] 1 ] g1 Adder :—-: '
~Le gl =R
From I-cache : : —t— ail a2 Y > :
! ‘e > ) | N—— 1
| 1
X < = e t > oo 1
1 o—_1 5 |
_-[ B — 4 m I Load : :
Lookahead Window |1 IS : :
1 ———— | ] 1
1 1 1
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= lime

L 1 2 3 4 5 5] 1 2 3 <} 5 & 7 8
S| W[ f]dJ]ei]e2]s ] f | d|®1[®2] s
el l2f ] dl®&ei]ez]s I f [ d e1]e2] s |
= I | f|d]|®1]|®]|s Ia| f |d|®1]|®2] s
- g f ]l d]®e1]ea]|s la] f | d eq1]|e2] s |
. - . -
{(No data dependence) (12 uses data generated by 11)

(a) Data dependence stalls the second pipeline in shaded cycles

1 2 3 <4 5

:; : g ::: :3 2 Captions:
6 7 8 9 10 11 f = fetch
I3 f d |[=q]e2] s d = decode
14 f d | ©®1] ©2]| s el = execute 1
Is | f d|®1]©Sz2] s e? = execute 2
Ig| f d|®1]|©2] s s = store (writeback)

(b) Branch instruction 12 causes a delay slot of length 4 in both pipelines

1 2 3 <4 5 G 1 2 3 <4 5 G 7 8
[ f |l d]ei]ez|s Ll f[d]ei]|ez]s
I f d |ei|ez] s I f | d €1 [e2| s
I3 f d [©1]©2]| s Is| f d & %2 [ s
lalf d |®1]®2] s lq| f d e lex| s |
- - . - - .
(Mo resource conflicts) (11 and |2 conflict in using the same functional

unit, and |14 uses data generated by 12)

{(c) Resource conflicts and data dependences cause the stalling of
pipeline operations for some cycles

Fig. 6.29 Dependences and resocurce conflicts may stall one or two pipelines in a two-issue superscalar
processor



pTime
2 1 2 3 4 5 6
2l L[ fld]e]e]s
Q
2| lf|d]|®]|®]s
€ I3 f [d][®]®
ly [ f[d]€1]®
.0
L3
(No data dependence)

SUPERSCALAR PIPELINE DESIGN

1 2 3 4 5 6 7 8
fld|€[C2]s

fld €11€9| s
I3 f ] d]|®]|€]s

4| f [ d €118 s

(12 uses data generated by |1)

(a) Data dependence stalls the second pipeline in shaded cycles
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SUPERSCALAR PIPELINE DESIGN

1 2 3 4 5
[ el e
11 f{dj=1/-2]8 Captions:
2 d|[€1]©2] s
6 7 8 9 10 M f = fetch
4 fld|€]|€2] s d = decode
4 fldl|e1|€] s el = execute 1
5 f [d]|€1]€2] s e2 = execute 2
lg| f|d|€1]€] s s = store (writeback)

(b) Branch instruction 12 causes a delay slot of length 4 in both pipelines
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SUPERSCALAR PIPELINE DESIGN

1 2 3 4 5 6 1 2 3 4 5 6 7 8
4 f | d[er]|er]s LI f[d]|ei][e]s
oL f|d[ei[e]s L fld] [e1][®]s
I3[ f [d][®]® I3[ f | d IAE
L fldle]e]s 4| f | d ©1182] s
0.. 0..
(No resource conflicts) (11 and 12 conflict in using the same functional

unit, and |4 uses data generated by 12)

(c) Resource conflicts and data dependences cause the stalling of
pipeline operations for some cycles
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Y

Program order

1.
2.
3.
4.
5.
16.

load R1, A
Add R2, Ri1
Add R3, R4
Mul R4, R5
Comp R6

Mul  R6, R7

SUPERSCALAR PIPELINE DESIGN

I R1 « Memory (A)/ 0 °
IR2 « (R2) + (R1)/

[R3 « (R3) + (R4)/
/R4 « (R4)* (RS)/
| R6 « (R6)/
I R6 « (R6) * (R7)/ Flow Anti- Output-dependence,
dependence dependence also flow
dependence

(b) A sample program and its dependence graph, where 12 and I3 share the adder and 14 and 16 share the
multiplier
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~ime (clock cycles)

1 2 3 4 5 6 7 8 9
Pipe 1, 14 foldq] ez 54
Pipe 2, 15| o | do a, | as| s2
Ig | fq | d4 a | ax | s4
g 14 f2 d2 m1 m2 m3 32
k= Is| f4 [ dq] €4 CP
vg lg|_f2 [ d2 mq|ma[m3| S2 |

(a) In-order issue with in-order completion in nine cycles

1 2 3 4 5 6 7 8 9

Pipe 1, 14| f4 | dq | ©2 | S1
Pipe 2, 1, | f5 | ds a4 | as | So Completion order
Ia| fq | d4q aq | az | s1q 4 5 6 7 8 9
g fo [do | M| Mo mg] s, Pipe 1[ 1,4 I | I3
Is| f1 | dqi] ©1] Sq Pipe 2 o | 14 Tes
le|_f2 | d2 My | Mp [ Ma] 82 |

(b) In-order issue and out-of-order completion in nine cycles

1 2 3 4 5 6 7 1 2 3
Pipe 1, I3[, [d, [ @41 [ @2 | 51 Pipe1| I3 | Ig Issue order
F’lpe 2, l4 f2 d2 mq | Mo | M3 | So I Pipe 2 |4 l1 l2
Lookahead Window Ig| f3 [ day | €4 ] S (Pipe 1) Lookahead| Is
Pipe 1, 1g| fq | dq [mMq| Mz ]| M3 So | 4 5 6 7
Pipe 2, 141 fo | do | €2 | So Pipe 1| Is | I3 I2 | completion order
F’lpe 2. 12 f1 d1 a4 aon I 31 I Pipe 2 |1 l4 le

(c) Out-of-order issue and out-of-order completion in seven cycles using an instruction
lookahead window in the recoding process

Fig.6.30 Instruction issue and completion policies for a superscalar processor with and without instruction
lookahead support (Timing charts correspond to parallel execution of the program in Fig. 6.28)



SUPERSCALAR PIPELINE DESIGN

Time required by base scalar machine:
o TN =K+N-1

The ideal execution time required by m-issue superscalar machine:
o T(m<1)=K+(N-m)m
o Where,

« Kis the time required to execute first m instructions through m pipelines of k-stages
simultaneously

« Second term corresponds to time required to execute remaining N-m instructions , m per
cycle through m pipelines

The ideal speedup of superscalar machine
o S(m,1)=T(1,1)/T(m,1) =m(N +k - 1)/[N+ m(k - 1)]

As n = infinity, S(m,1) >m
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