
Bus, Cache and shared memory



Bus System

• System bus of a computer system operates on
contention basis

• Effective bandwidth available to each
processor is inversely proportional to the
number of processor contending for the bus

• This is the reason for simplicity (4-6
processors) and low cost



Backplane bus specification

• It interconnects processors, 
data storage and peripheral 
devices in a tightly coupled 
h/w configuration

• Allow the interconnection 
between the devices

• Timing protocols
– Operational rules-orderly data transfers on the bus
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Backplane Multiprocessor System



Data Transfer Bus (DTB)

• Data, address and control lines form Data 
transfer bus (DTB).
– Transfers data, address and control signals

• Addressing lines are used to broadcast the 
data and address

• The number of addressing lines is proportional 
to the logarithm of the size of the address 
space



• Data lines are proportional to the memory 
word length
– VME bus system has 32 address lines and 32 data 

lines

• Control lines are used to indicate read/write, 
timing control and bus error conditions



Bus Arbitration and Control
• Sharing of buses in an optimal way
• The process of assigning control of the DTB to 

a requester is called arbitration
• Requester is called a master and the receiving 

end is called a slave
• Interrupt lines are used to handle interrupts

– This is prioritized



Functional modules

• It is a collection of electronic circuitry that 
resides on one functional board

• Arbiter is a functional module that accepts bus 
requests from the requester module and 
grants control of the DTB to one requester at a 
time

• Bus timer measures the time for each data 
transfer



• An interrupter module generates an interrupt 
request and provides status info when an 
interrupt handler module requests

• A location monitor- monitors the data transfers 
over the DTB

• A power monitor watches the status of the power 
source and signals when power becomes 
unstable

• A system clock driver provides a clock timing 
signal
– Board interface logic is needed to match the signal 

line impedance, propagation time and termination 
b/w backplane and plug-in boards 



Physical limitations

• Due to electrical, mechanical & packaging
limitations, limited number of boards can be
plugged into a single backplane

• Multiple backplane buses can be mounted on
the same backplane chassis

• Bus system is difficult to scale, limited by
contention and packaging constraints



Addressing and Timing protocols

• Two IC chips connected to a bus:
1. active
2. passive

• Active chips are like processors act as bus 
master

• Passive chips are memories can act only as 
slaves



• Master can initiate a bus cycle
• Slaves respond to requests by a master

• Only one master can control the bus at a time
• One or more slaves can respond the  master’s 

requests at the same time



Bus Addressing
• Backplane is driven by a fixed cycle time called 

bus cycle
• Bus cycle is determined by the electrical, 

mechanical and packaging characteristics
• To optimize the performance, the bus should be 

designed to minimize the time required for 
1. Request handling
2. Arbitration
3. Addressing
4. Interrupts
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Bus Addressing

• Identify each board with a slot number
• When slot # matches contents of high-order 

address lines, the board is selected as a slave 
(slot addressing)



Broadcall and broadcast

• Broadcall is a read operation
– Multiple slaves placing their data on the bus lines
– It is used to detect multiple interrupt sources

• Broadcast is a write operation
– Multiple slaves writing their data into their storage 

devices
– Timing protocol is needed to synchronize the 

master and slave operations



Bus
Master slave

1.Send request to bus
2. Bus allocated

Time           3. Load address/data on bus
4. Slave selected after    

signal stabilized
5. Signal data transfer

6. Take stabilized data
7. Ack data taken

8. Knowing data taken, remove
data and free the bus

9. Knowing data removed, 
signal transfer 
completed and free the 
bus

10. Send next bus request



Synchronous Timing

• Fixed clock pulses
• Steps:

1. First data should be stabilized on the 
data lines

2. Master uses a data-ready pulse to 
initiate the data transfer

3. Slave uses a data-accept pulse to signal 
completion of the information transfer





Advantages:
1. simple to control
2. requires less control circuitary
3. cost is less

Disadvantages:
1. suitable for connecting devices having 
relatively same speed otherwise, slower 
device will slow down the entire bus operation



Asynchronous Timing
• Based on a handshaking or interlocking mechanism
• No fixed clock cycle is needed
• Data-ready, data-accept
Rising Edge:

1. In master, the data ready signal triggers the data-accept 
signal of slave indicates data transfer

Trailing Edge:
In master, the data-ready signal triggers the data-accept 
signal of slave indicates the removal of data from the bus

• Adv: variable length clock signals in different speed
• Fast and slow devices can be connected
• flexibility





Arbitration, Transaction and Interrupt

• Process of selecting the next bus master is 
called arbitration

• Types
Central arbitration
Distributed arbitration



Central Arbitration

• Each master can send request
• All requests share the same bus-request line
• Allocation is based on the priority
• Adv: Simplicity

Additional devices can be added
Disadv: Fixed priority

Slowness







Distributed Arbitration

• Each master is equipped with its own arbiter
• Each arbiter has arbitration number
• Arbitration number is used to resolve the 

arbitration competition
• When two or more compete for the 

arbitration, winner is high arbitration number 





Transaction Modes

• Address-only transfer
– Consists of an address transfer followed by no data.

• Compelled data transfer
– Consists of an address transfer followed by a block of

one or more data transfer to one or more contiguous
addresses.

• Packet data transfer
– Consists of an address transfer followed by a fixed

length block of data transfers (packet) from a set of
contiguous addresses.





Interrupt Mechanisms

• It is a request from I/O or other devices to a 
processor for service or attention

• Priority interrupt bus is used to pass the 
interrupt signals

• The interrupter must provide status and ID 
information
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Futurebus+ Goals

• Open bus standard  to support:
– 64 bit address space
– Throughput required by multi-RISC or future 

generations of multiprocessor architectures

• Expandable or scalable
• Independent of particular architectures and 

processor technologies
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Standard Requirements

• Independence for an open standard
• Asynchronous timing protocol
• Optional packet protocol 
• Distributed arbitration protocols
• Support of high reliability and fault tolerant 

applications
• Ability to lock modules w/o deadlock or 

livelock
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Standard Requirements

• Circuit-switched and split transaction 
protocols 

• Support of real-time mission critical 
computations w/multiple priority levels

• 32 or 64 bit addressing 
• Direct support of snoopy cache-based procs.
• Compatible message passing protocols
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Futurebus+ Signal Lines

• Information (150 – 306)
• Synchronization (7)
• Bus arbitration (18)
• Handshake (6)
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Information Lines

• 64 address lines multiplexed with lower order 64 
data lines

• Data path can be up to 256 bits wide
• Tag lines extend address/data modes (opt)
• Command lines carry info from master
• Status lines used by slaves to respond
• Capability lines to declare special bus transactions
• Parity check lines for protection
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Synchronization Lines

• Coordinate exchange of address, command, 
capability status and data

• Address/data handshake lines used by both 
master and slaves

• Bus tenure line used to coordinate transfer of 
bus control



EENG-630 Chapter 5 37

Arbitration and Misc. Lines

• Arbitration bus lines carry a number to signify 
precedence of competitors

• Central arbitration lines for central bus control
• Geographical lines for slot addresses
• Additional lines for utility, clock, and power 

connections



Cache Memory Organization



Inventor of Cache memory

• M. V. Wilkes, “Slave Memories and Dynamic Storage Allocation,”
• IEEE Transactions on Electronic Computers, vol. EC-14, no. 2,
• pp. 270-271, April 1965.



Cache Memory Organization

CPU Registers
100s Bytes
<10s ns

Cache
K Bytes
10-100 ns
1-0.1 cents/bit

Main Memory
M Bytes
200ns- 500ns
$.0001-.00001 cents /bit
Disk
G Bytes, 10 ms 
(10,000,000 ns)

10   - 10  cents/bit
-5 -6

Capacity
Access Time
Cost

Tape
infinite
sec-min
10 -8

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
4K-16K bytes

user/operator
Mbytes

faster

Larger



Processor

Cache
small, fast 

memory

Main memory
large, inexpensive 

(slow)

words

blocks

– Processor does all memory operations with 
cache.

– Miss – If requested word is not in cache, a 
block of words containing the requested word 
is brought to cache, and then the processor 
request is completed.

– Hit – If the requested word is in cache, read or 
write operation is performed directly in cache, 
without accessing main memory.

– Block – minimum amount of data transferred 
between cache and main memory.



Cache addressing models



Physical Address Caches

• When a cache is accessed with a physical 
memory address
Ex: VAX8600, Intel i486

• Data is written through the memory 
immediately via write-through(WT) cache

• Delayed until block replacement by using a 
write-back (WB) cache





Virtual Address Caches

• When a cache is indexed or tagged with the 
virtual address 
Ex: Intel i486
Adv: Accessing is faster

Efficiency is high





Aliasing Problem

• Different logically addressed data have the 
same index/tag in the cache

• Confusion if two or more processors access 
the same physical cache location

• Flush cache when aliasing occurs, but leads to 
slowdown

• Apply special tagging with a process key or 
with a physical address



Cache Mapping

• The transfer of information from main
memory to cache memory is conducted in
units of cache blocks

• Four block placement schemes:
a. Direct-mapping cache
b. Fully-associative cache
c. Set Associative cache
d. Sector cache
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Block Placement Schemes

• Performance depends upon cache access patterns, 
organization, and management policy

• Blocks in caches are block frames( Bi), and blocks in 
main memory (Bj )

• Bi (i  m), Bj (i  n), n<<m, n=2s, m=2r

• Each block has b words b=2w, for cache total of 
mb=2r+w words, main memory of nb= 2s+w words
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Direct Mapping Cache

• Direct mapping of n/m memory blocks to one 
block frame in the cache

• Placement is by using modulo-m function
• Bj Bi if i=j mod m
• Unique block frame Bi that each Bj loads into.
• Simplest organization to implement
• No way to implement replacement policy.
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Direct Mapping Cache
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Direct Mapping Cache

• Advantages
– Simple hardware
– No associative search
– No page replacement 

policy
– Lower cost
– Higher speed

• Disadvantages
– Rigid mapping
– Poorer hit ratio
– Prohibits parallel virtual 

address translation
– Use larger cache size 

with more block frames 
to avoid contention
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Fully Associative Cache

• Each block in main memory can be placed in 
any of the available block frames

• s-bit tag needed in each cache block (s > r)
• An m-way associative search requires the tag 

to be compared w/ all cache block tags
• Use an associative memory to achieve a 

parallel comparison w/all tags concurrently
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Fully Associative Cache
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Fully Associative Caches

• Advantages:
– Offers most flexibility in 

mapping cache blocks
– Higher hit ratio
– Allows better block 

replacement policy with 
reduced block 
contention

• Disadvantages:
– Higher hardware cost
– Only moderate size 

cache
– Expensive search 

process
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Set Associative Caches

• In a k-way associative cahe, the m cache block 
frames are divided into v=m/k sets, with k
blocks per set

• Each set is identified by a d-bit set number
– v=2d

• Compare the tag w/the k tags w/in the 
identified set

• Bj  Bf  Si if  j(mod v) = i
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Sector Mapping Cache

• Partition cache and main memory into fixed 
size sectors then use fully associative search

• Use sector tags for search and block fields 
within sector to find block

• Only missing block loaded for a miss
• The ith block in a sector placed into the th 

block frame in a destined sector frame
• Attach a valid/invalid bit to block frames
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Cache Performance Issues

• Cycle count: # of m/c cycles needed for cache access, 
update, and coherence

• Hit ratio: how effectively the cache can reduce the 
overall memory access time

• Program trace driven simulation: present snapshots 
of program behavior and cache responses 

• Analytical modeling:  provide insight into the 
underlying processes 
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Cycle Counts

• Cache speed affected by underlying static or 
dynamic RAM technology, organization, and 
hit ratios

• Write-thru/write-back policies affect count
• Cache size, block size, set number, and 

associativity affect count
• Directly related to hit ratio
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Hit Ratio

• Affected by cache size and block size
• Increases w.r.t. increasing cache size
• Limited cache size, initial loading, and changes 

in locality prevent 100% hit ratio
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Effect of Block Size

• With fixed cache size, block size has impact
• As block size increases, hit ratio improves due 

to spatial locality
• Peaks at optimum block size, then decreases
• If too large, many words in cache not used
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Cache performance



5.3 Shared memory organization



In computer science, shared memory is memory that may be
simultaneously accessed by multiple programs with an intent to
provide communication among them or avoid redundant copies.

Shared memory is an efficient means of passing data between
programs. Depending on context, programs may run on a single
processor or on multiple separate processors.



69

Characteristics of shared memory systems 

• Any processor can directly reference any memory
location.

• Communication occurs implicitly as result of
loads and stores.

• Location of data in memory is transparent to the
programmer.

• Inherently provided on wide range of platforms.
• Memory may be physically distributed among

processors.
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Interleaved Memory Organization

• Goal is to close the speed gap b/t CPU/cache 
and main memory access

• Provides higher b/w for pipelined access of 
contiguous memory locations
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Memory Interleaving

• Main memory has multiple modules 
connected to system bus or n/w

• Can present different addresses to different 
modules for parallel/pipelined access

• m=2a modules, w/ w= 2b words
• Varying linear address assignments
• Have random and block accesses
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Addressing Formats

• Low-order interleaving: spread contiguous 
locations across modules horizontally
– Lower a bits identify module, b for word
– Supports block access in pipeline fashion 

• High-order: contiguous locations within same 
module
– Higher a bits identify module, b for word
– Cannot support block access
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Pipelined Memory Access

• Overlap access of m memory modules
• Major cycle divided into m minor cycles
•  = /m m=degree of interleaving
• =total time to complete access of one word
• =actual time to produce one word
• Total block access time is 2
• Effective access time of each word is 

ss2
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ss2 important
sunil shetty, 11-09-2019
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Memory Bandwidth
• Memory b/w B of m-way interleaved memory 

is upper bounded by m and lower bounded by 
1

• Hellerman estimate of B is 
– 16 modules then B is 4 times faster than single 

module. 

• Based on single processor system, conflicts 
reduce it further







 


n

m

m
t

1
11


Avg. time to access
one element in a vector



Fault Tolerance
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Higher degree of 
interleaving, the 
higher the 
potential memory 
bandwidth if the 
system is fault-
free.
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Memory Allocation Schemes

• Virtual memory allows many s/w processes 
time-shared use of main memory

• Memory manager handles the swapping
• It monitors amount of available main memory 

and decides which processes should reside 
and which to remove
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Allocation Policies

• Memory swapping: process of moving blocks 
of data between memory levels

• Nonpreemptive allocation: if full, then swaps 
out some of the allocated processes
– Easier to implement, less efficient

• Preemptive:has freedom to preempt an 
executing process
– More complex, expensive, and flexible
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Allocation Policies

• Local allocation: considers only the resident 
working set of the faulty process
– Used by most computers

• Global allocation: considers the history of the 
working sets of all resident processes in 
making a swapping decision
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Swapping Systems

• Allow swapping only at entire process level
• Swap device: configurable section of a disk set 

aside for temp storage of data swapped
• Swap space: portion of disk set aside
• Depending on system, may swap entire 

processes only, or the necessary pages
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Swapping in UNIX

• System calls that result in a swap:
– Allocation of space for child process being created
– Increase in size of a process address space
– Increased space demand by stack for a process
– Demand for space by a returning process swapped 

out previously

• Special process 0 is the swapper
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Demand Paging Systems

• Allows only pages to be transferred b/t main 
memory and swap device

• Pages are brought in only on demand
• Allows process address space to be larger than 

physical address space
• Offers flexibility to dynamically accommodate 

large # of processes in physical memory on 
time-sharing basis
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Working Sets

• Set of pages referenced by the process during 
last n memory refs (n=window size)

• Only working sets of active processes are 
resident in memory
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Other Policies

• Hybrid memory systems combine advantages 
of swapping and demand paging

• Anticipatory paging prefetches pages based  
on anticipation
– Difficult to implement
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Memory Consistency/Inconsistency

• Memory inconsistency: when memory access 
order differs from program execution order

• Sequential consistency: memory accesses (I 
and D) consistent with program execution 
order
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Memory Consistency Issues

• Memory model: behavior of a shared memory 
system as observed by processors

• Choosing a memory model – compromise b/t 
a strong model minimally restricting s/w and a 
weak model offering efficient implementation

• Primitive memory ops: load, store, swap
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Event Orderings

• Processes: concurrent instruction streams executing 
on different processors

• Consistency models specify the order by which 
events from one process should be observed by 
another

• Event ordering helps determine if a memory event is 
legal for concurrent accesses

• Program order: order by which memory access occur 
for execution of a single process, w/o any reordering 
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Primitive Memory Operations

• Load by Pi complete wrt Pk when issue of a store to 
same location by Pk does not affect value returned by 
load

• Store by Pi complete wrt Pk when an issued load to 
same address by Pk returns the value by this store

• Load is globally performed if it is performed wrt all 
processors and if the store that is the source of the 
returned value has been performed wrt to all
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Difficulty in Maintaining Correctness 
on an MIMD

• If no synch. among instruction streams, then 
large # of different instruction interleavings

• Could change execution order, leading to more 
possibilities

• If accesses are not atomic, then different 
processors can observe different interleavings
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Atomicity 

• Categories of memory behavior:
– Program order preserved and uniform observation 

sequence by all processors
– Out of program order allowed and uniform 

observation sequence by all processors
– Out of program order allowed and nonuniform 

sequences observed by different processors
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Atomicity 

• Atomic memory accesses: memory updates 
are known to all processors at the same time

• Non-atomic: having individual program orders 
that conform is not a sufficient condition for 
sequential consistency
– Multiprocessor cannot be strongly ordered
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Lamport’s Definition of Sequential 
Consistency

• A multiprocessor system is sequentially
consistent if the result of any execution is the 
same as if the operations of all the processors 
were executed in some sequential order, and 
the operations of each individual processor 
appear in this sequence in the order specified 
by its program
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Sequential Consistency 

• Sufficient conditions:
– Before a load is allowed to perform wrt any other 

processor, all previous loads must be globally 
performed and all previous stores must be 
performed wrt all processors

– Before a store is allowed to perform wrt any other 
processor, all previous loads must be globally 
performed and all previous stores must be 
performed wrt to all processors
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Sequential Consistency Axioms
• The memory order conforms to a total binary order in 

which shared memory is accessed in real time over all 
loads/stores

• A load always returns the value written by the latest 
store to the same location

• If 2 ops appear in particular program order, same 
memory order

• Swap op is atomic with respect to stores. No other 
store can intervene b/t load and store parts of swap

• All stores and swaps must eventually terminate
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Implementation Considerations

• A single port s/w services one op at a time
• Order in which s/w is thrown determines 

global order of memory access ops
• Strong ordering preserves the program order 

in all processors
• Sequential consistency model leads to poor 

memory performance due to the imposed 
strong ordering of memory events
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Weak Consistency Models

• Multiprocessor model may range from strong 
(sequential) consistency to various degrees of 
weak consistency

• Two models considered
– DSB model
– TSO model
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DSB Model

• All previous synch. accesses performed before 
load or store allowed

• All previous load/stores performed before a 
synch. allowed

• Synch. accesses sequentially consistent with 
respect to one another
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TSO Model
• Load returns latest store result
• Memory order is a total binary relation over all pairs 

of store ops
• If 2 stores appear in part. program order, same 

memory order
• If a mem op follows a load in prog order, must also 

follow load in mem order
• Swap op atomic with respect to other stores – no 

other store can interleave b/t load/store parts of 
swap

• All stores/swaps must eventually terminate
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In this chapter… 

• Linear Pipeline Processors 

• Non-linear Pipeline Processors 

• Instruction Pipeline Design 

• Arithmetic Pipeline Design 

• Superscalar Pipeline Design 
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LINEAR PIPELINE PROCESSORS 

• Linear Pipeline Processor  
o (Definition) 

• Models of Linear Pipeline 
o Synchronous Model 

o Asynchronous Model 

o (Corresponding reservation tables) 

• Clocking and Timing Control 
o Clock Cycle 

o Pipeline Frequency 

o Clock skewing 

o Flow-through delay 

o Speedup, Efficiency and Throughput 

• Optimal number of Stages and Performance-Cost Ratio (PCR) 

Sumit Mittu, Assistant Professor, CSE/IT,  Lovely Professional University 3 



LINEAR PIPELINE PROCESSORS 

Sumit Mittu, Assistant Professor, CSE/IT,  Lovely Professional University 4 



LINEAR PIPELINE PROCESSORS 
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NON-LINEAR PIPELINE PROCESSORS 

• Dynamic Pipeline 
o Static v/s Dynamic Pipeline 

o Streamline connection, feed-forward connection and feedback connection 

• Reservation and Latency Analysis 
o Reservation tables 

o Evaluation time 

• Latency Analysis 
o Latency 

o Collision 

o Forbidden latencies 

o Latency Sequence, Latency Cycle and Average Latency 
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INSTRUCTION PIPELINE DESIGN 
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• Instruction Execution Phases 
o E.g. Fetch, Decode, Issue, Execute, Write-back 

o In-order Instruction issuing and Reordered Instruction issuing 

• E.g.  X = Y + Z , A = B x C 

• Mechanisms/Design Issues for Instruction Pipelining 
o Pre-fetch Buffers 

o Multiple Functional Units 

o Internal Data Forwarding 

o Hazard Avoidance 

• Dynamic Scheduling 

• Branch Handling Techniques 
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INSTRUCTION PIPELINE DESIGN 
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• Fetch: fetches instructions from memory; ideally one per cycle 

• Decode: reveals instruction operations to be performed and identifies the  resources needed 

• Issue: reserves the resources and reads the operands from registers 

• Execute: actual processing of operations as indicated by instruction 

• Write Back: writing results into the registers 
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INSTRUCTION PIPELINE DESIGN 

Mechanisms/Design Issues of Instruction Pipeline 

Sumit Mittu, Assistant Professor, CSE/IT,  Lovely Professional University 15 

• Pre-fetch Buffers 
o Sequential Buffers 

o Target Buffers 

o Loop Buffers 
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Mechanisms/Design Issues of Instruction Pipeline 
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• Multiple Functional Units 
o Reservation Station and Tags 

o Slow-station as Bottleneck stage 

• Subdivision of Pipeline Bottleneck stage 

• Replication of Pipeline Bottleneck stage 

• (Example to be discussed) 
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Mechanisms/Design Issues of Instruction Pipeline 
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Mechanisms/Design Issues of Instruction Pipeline 
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• Internal Forwarding and Register Tagging 
o Internal Forwarding:  

• A “short-circuit” technique to replace unnecessary memory accesses by register-register 
transfers in a sequence of fetch-arithmetic-store operations 

o Register Tagging:  

• Use of tagged registers , buffers and reservation stations, for exploiting concurrent activities 
among multiple arithmetic units 

o Store-Fetch Forwarding 

• (M  R1, R2  M) replaced by (M  R1, R2  R1) 

o Fetch-Fetch Forwarding 

• (R1  M, R2  M) replaced by (R1  M, R2  R1) 

o Store-Store Overwriting 

• (M  R1, M  R2) replaced by (M  R2) 
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Mechanisms/Design Issues of Instruction Pipeline 
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• Internal Forwarding and Register Tagging 
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Mechanisms/Design Issues of Instruction Pipeline 
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• Internal Forwarding and Register Tagging 
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Mechanisms/Design Issues of Instruction Pipeline 
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• Hazard Detection and Avoidance 
o Domain or Input Set of an instruction 

o Range or Output Set of an instruction 

o Data Hazards: RAW, WAR and WAW 

o Resolution using Register Renaming approach 
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Dynamic Instruction Scheduling 
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• Idea of Static Scheduling 
o Compiler based scheduling strategy to resolve Interlocking among instructions 

• Dynamic Scheduling 
o Tomasulo’s Algorithm (Register-Tagging Scheme) 

• Hardware based dependence-resolution 

o Scoreboarding Technique 

• Scoreboard: the centralized control unit 

• A kind of data-driven mechanism 
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• Branch Taken, Branch Target, Delay Slot 

• Effect of Branching 
o Parameters: 

• k : No. of stages in the pipeline 

• n : Total no. of instructions or tasks 

• p : Percentage of Brach instructions over n 

• q : Percentage of successful branch instructions (branch taken) over p. 

• b : Delay Slot 

• τ : Pipeline Cycle Time 

o Branch Penalty = q of (p of n) * bτ = pqnbτ  

o Effective Execution Time: 

• Teff = [k + (n-1)] τ + pqnbτ = [k + (n-1) + pqnb]τ 
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• Effect of Branching 
o Effective Throughput: 

• Heff = n/Teff 

• Heff = n / {[k + (n-1) + pqnb]τ} = nf / [k + (n-1) + pqnb] 

• As nInfinity and b = k-1 

o H*eff = f / [pq(k-1)+1] 

• If p=0 and q=0 (no branching occurs) 

o H**eff = f = 1/τ 

o Performance Degradation Factor 

• D = 1 – H*eff / f = pq(k-1) / [pq(k-1)+1] 
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• Branch Prediction 
o Static Branch Prediction: based on branch code types 

o Dynamic Branch prediction: based on recent branch history 

• Strategy 1: Predict the branch direction based on information found at decode stage. 

• Strategy 2: Use a cache to store target addresses at effective address calculation stage. 

• Strategy 3: Use a cache to store target instructions at fetch stage 

o Brach Target Buffer Organization 

• Delayed Branches 
o A delayed branch of d cycles allows at most d-1 useful instructions to be executed following the 

branch taken. 

o Execution of these instructions should be independent of branch instruction to achieve a zero 

branch penalty 
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• Finite-precision arithmetic 

• Overflow and Underflow 

• Fixed-Point operations 
o Notations: 

• Signed-magnitude, one’s complement and two-complement notation 

o Operations: 

• Addition:  (n bit, n bit)  (n bit) Sum, 1 bit output carry 

• Subtraction: (n bit, n bit)  (n bit) difference 

• Multiplication: (n bit, n bit)  (2n bit) product 

• Division:  (2n bit, n bit)  (n bit) quotient, (n bit) remainder 



ARITHMETIC PIPELINE DESIGN 

Computer Arithmetic Operations 

Sumit Mittu, Assistant Professor, CSE/IT,  Lovely Professional University 32 

• Floating-Point Numbers 
o X = (m, e) representation 

• m: mantissa or fraction 

• e: exponent with an implied base or radix r. 

• Actual Value X = m * r e 

o Operations on numbers X = (mx, ex) and Y = (my, ey) 

• Addition:  (mx * r
ex-ey + my, ey) 

• Subtraction: (mx * r
ex-ey – my, ey) 

• Multiplication: (mx * my, ex+ey) 

• Division:  (mx / my, ex – ey) 

• Elementary Functions 
o Transcendental functions like: Trigonometric, Exponential, Logarithmic, etc. 
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• Separate units for fixed point operations and floating point operations 

• Scalar and Vector Arithmetic Pipelines 

• Uni-functional or Static Pipelines 

• Arithmetic Pipeline Stages 
o Majorly involve hardware to perform: Add and Shift micro-operations 

o Addition using: Carry Propagation Adder (CPA) and Carry Save Adder (CSA) 

o Shift using: Shift Registers 

• Multiplication Pipeline Design 
o E.g. To multiply two 8-bit numbers that yield a 16-bit product using CSA and CPA Wallace Tree. 
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• Multifunctional Pipeline:  
o Static multifunctional pipeline 

o Dynamic multifunctional pipeline 

• Case Study: T1/ASC static multifunctional pipeline architecture 
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• Pipeline Design Parameters 
o Pipeline cycle, Base cycle, Instruction issue rate, Instruction issue Latency, Simple Operation Latency 

o ILP to fully utilize the pipeline 

• Superscalar Pipeline Structure 

• Data and Resource Dependencies 

• Pipeline Stalling 

• Superscalar Pipeline Scheduling 
o In-order Issue and in-order completion 

o In-order Issue and out-of-order completion 

o Out-of-order Issue and out-of-order completion 

• Superscalar Performance 
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Parameter Base Scalar Processor Super Scalar Processor 

(degree = K) 

Pipeline Cycle 1 (base cycle) K 

Instruction Issue Rate 1 K 

Instruction Issue Latency 1 1 

Simple Operation Latency 1 1 

ILP to fully utilize pipeline 1 K 
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• Time required by base scalar machine: 
o T(1,1) = K + N – 1 

• The ideal execution time required by m-issue superscalar machine: 
o T(m,1) = K + (N – m)/m 

o Where,  

• K is the time required to execute first m instructions through m pipelines of k-stages 
simultaneously 

• Second term corresponds to time required to execute remaining N-m instructions , m per 
cycle through m pipelines 

• The ideal speedup of superscalar machine 
o S(m,1) = T(1,1)/T(m,1) = m(N + k – 1)/[N+ m(k – 1)] 

• As n  infinity, S(m,1) m 


