
Bus, Cache and shared memory

Bus System

• System bus of a computer system operates on
contention basis

• Effective bandwidth available to each
processor is inversely proportional to the
number of processor contending for the bus

• This is the reason for simplicity (4-6
processors) and low cost

Backplane bus specification

• It interconnects processors,
data storage and peripheral
devices in a tightly coupled
h/w configuration

• Allow the interconnection
between the devices

• Timing protocols
– Operational rules-orderly data transfers on the bus

EENG-630 Chapter 5

Backplane Multiprocessor System

Data Transfer Bus (DTB)

• Data, address and control lines form Data
transfer bus (DTB).
– Transfers data, address and control signals

• Addressing lines are used to broadcast the
data and address

• The number of addressing lines is proportional
to the logarithm of the size of the address
space

• Data lines are proportional to the memory
word length
– VME bus system has 32 address lines and 32 data

lines

• Control lines are used to indicate read/write,
timing control and bus error conditions

Bus Arbitration and Control
• Sharing of buses in an optimal way
• The process of assigning control of the DTB to

a requester is called arbitration
• Requester is called a master and the receiving

end is called a slave
• Interrupt lines are used to handle interrupts

– This is prioritized

Functional modules

• It is a collection of electronic circuitry that
resides on one functional board

• Arbiter is a functional module that accepts bus
requests from the requester module and
grants control of the DTB to one requester at a
time

• Bus timer measures the time for each data
transfer

• An interrupter module generates an interrupt
request and provides status info when an
interrupt handler module requests

• A location monitor- monitors the data transfers
over the DTB

• A power monitor watches the status of the power
source and signals when power becomes
unstable

• A system clock driver provides a clock timing
signal
– Board interface logic is needed to match the signal

line impedance, propagation time and termination
b/w backplane and plug-in boards

Physical limitations

• Due to electrical, mechanical & packaging
limitations, limited number of boards can be
plugged into a single backplane

• Multiple backplane buses can be mounted on
the same backplane chassis

• Bus system is difficult to scale, limited by
contention and packaging constraints

Addressing and Timing protocols

• Two IC chips connected to a bus:
1. active
2. passive

• Active chips are like processors act as bus
master

• Passive chips are memories can act only as
slaves

• Master can initiate a bus cycle
• Slaves respond to requests by a master

• Only one master can control the bus at a time
• One or more slaves can respond the master’s

requests at the same time

Bus Addressing
• Backplane is driven by a fixed cycle time called

bus cycle
• Bus cycle is determined by the electrical,

mechanical and packaging characteristics
• To optimize the performance, the bus should be

designed to minimize the time required for
1. Request handling
2. Arbitration
3. Addressing
4. Interrupts

EENG-630 Chapter 5 14

Bus Addressing

• Identify each board with a slot number
• When slot # matches contents of high-order

address lines, the board is selected as a slave
(slot addressing)

Broadcall and broadcast

• Broadcall is a read operation
– Multiple slaves placing their data on the bus lines
– It is used to detect multiple interrupt sources

• Broadcast is a write operation
– Multiple slaves writing their data into their storage

devices
– Timing protocol is needed to synchronize the

master and slave operations

Bus
Master slave

1.Send request to bus
2. Bus allocated

Time 3. Load address/data on bus
4. Slave selected after

signal stabilized
5. Signal data transfer

6. Take stabilized data
7. Ack data taken

8. Knowing data taken, remove
data and free the bus

9. Knowing data removed,
signal transfer
completed and free the
bus

10. Send next bus request

Synchronous Timing

• Fixed clock pulses
• Steps:

1. First data should be stabilized on the
data lines

2. Master uses a data-ready pulse to
initiate the data transfer

3. Slave uses a data-accept pulse to signal
completion of the information transfer

Advantages:
1. simple to control
2. requires less control circuitary
3. cost is less

Disadvantages:
1. suitable for connecting devices having
relatively same speed otherwise, slower
device will slow down the entire bus operation

Asynchronous Timing
• Based on a handshaking or interlocking mechanism
• No fixed clock cycle is needed
• Data-ready, data-accept
Rising Edge:

1. In master, the data ready signal triggers the data-accept
signal of slave indicates data transfer

Trailing Edge:
In master, the data-ready signal triggers the data-accept
signal of slave indicates the removal of data from the bus

• Adv: variable length clock signals in different speed
• Fast and slow devices can be connected
• flexibility

Arbitration, Transaction and Interrupt

• Process of selecting the next bus master is
called arbitration

• Types
Central arbitration
Distributed arbitration

Central Arbitration

• Each master can send request
• All requests share the same bus-request line
• Allocation is based on the priority
• Adv: Simplicity

Additional devices can be added
Disadv: Fixed priority

Slowness

Distributed Arbitration

• Each master is equipped with its own arbiter
• Each arbiter has arbitration number
• Arbitration number is used to resolve the

arbitration competition
• When two or more compete for the

arbitration, winner is high arbitration number

Transaction Modes

• Address-only transfer
– Consists of an address transfer followed by no data.

• Compelled data transfer
– Consists of an address transfer followed by a block of

one or more data transfer to one or more contiguous
addresses.

• Packet data transfer
– Consists of an address transfer followed by a fixed

length block of data transfers (packet) from a set of
contiguous addresses.

Interrupt Mechanisms

• It is a request from I/O or other devices to a
processor for service or attention

• Priority interrupt bus is used to pass the
interrupt signals

• The interrupter must provide status and ID
information

EENG-630 Chapter 5 31

Futurebus+ Goals

• Open bus standard to support:
– 64 bit address space
– Throughput required by multi-RISC or future

generations of multiprocessor architectures

• Expandable or scalable
• Independent of particular architectures and

processor technologies

EENG-630 Chapter 5 32

Standard Requirements

• Independence for an open standard
• Asynchronous timing protocol
• Optional packet protocol
• Distributed arbitration protocols
• Support of high reliability and fault tolerant

applications
• Ability to lock modules w/o deadlock or

livelock

EENG-630 Chapter 5 33

Standard Requirements

• Circuit-switched and split transaction
protocols

• Support of real-time mission critical
computations w/multiple priority levels

• 32 or 64 bit addressing
• Direct support of snoopy cache-based procs.
• Compatible message passing protocols

EENG-630 Chapter 5 34

Futurebus+ Signal Lines

• Information (150 – 306)
• Synchronization (7)
• Bus arbitration (18)
• Handshake (6)

EENG-630 Chapter 5 35

Information Lines

• 64 address lines multiplexed with lower order 64
data lines

• Data path can be up to 256 bits wide
• Tag lines extend address/data modes (opt)
• Command lines carry info from master
• Status lines used by slaves to respond
• Capability lines to declare special bus transactions
• Parity check lines for protection

EENG-630 Chapter 5 36

Synchronization Lines

• Coordinate exchange of address, command,
capability status and data

• Address/data handshake lines used by both
master and slaves

• Bus tenure line used to coordinate transfer of
bus control

EENG-630 Chapter 5 37

Arbitration and Misc. Lines

• Arbitration bus lines carry a number to signify
precedence of competitors

• Central arbitration lines for central bus control
• Geographical lines for slot addresses
• Additional lines for utility, clock, and power

connections

Cache Memory Organization

Inventor of Cache memory

• M. V. Wilkes, “Slave Memories and Dynamic Storage Allocation,”
• IEEE Transactions on Electronic Computers, vol. EC-14, no. 2,
• pp. 270-271, April 1965.

Cache Memory Organization

CPU Registers
100s Bytes
<10s ns

Cache
K Bytes
10-100 ns
1-0.1 cents/bit

Main Memory
M Bytes
200ns- 500ns
$.0001-.00001 cents /bit
Disk
G Bytes, 10 ms
(10,000,000 ns)

10 - 10 cents/bit
-5 -6

Capacity
Access Time
Cost

Tape
infinite
sec-min
10 -8

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
4K-16K bytes

user/operator
Mbytes

faster

Larger

Processor

Cache
small, fast

memory

Main memory
large, inexpensive

(slow)

words

blocks

– Processor does all memory operations with
cache.

– Miss – If requested word is not in cache, a
block of words containing the requested word
is brought to cache, and then the processor
request is completed.

– Hit – If the requested word is in cache, read or
write operation is performed directly in cache,
without accessing main memory.

– Block – minimum amount of data transferred
between cache and main memory.

Cache addressing models

Physical Address Caches

• When a cache is accessed with a physical
memory address
Ex: VAX8600, Intel i486

• Data is written through the memory
immediately via write-through(WT) cache

• Delayed until block replacement by using a
write-back (WB) cache

Virtual Address Caches

• When a cache is indexed or tagged with the
virtual address
Ex: Intel i486
Adv: Accessing is faster

Efficiency is high

Aliasing Problem

• Different logically addressed data have the
same index/tag in the cache

• Confusion if two or more processors access
the same physical cache location

• Flush cache when aliasing occurs, but leads to
slowdown

• Apply special tagging with a process key or
with a physical address

Cache Mapping

• The transfer of information from main
memory to cache memory is conducted in
units of cache blocks

• Four block placement schemes:
a. Direct-mapping cache
b. Fully-associative cache
c. Set Associative cache
d. Sector cache

EENG-630 Chapter 5 50

Block Placement Schemes

• Performance depends upon cache access patterns,
organization, and management policy

• Blocks in caches are block frames(Bi), and blocks in
main memory (Bj)

• Bi (i  m), Bj (i  n), n<<m, n=2s, m=2r

• Each block has b words b=2w, for cache total of
mb=2r+w words, main memory of nb= 2s+w words

EENG-630 Chapter 5 52

Direct Mapping Cache

• Direct mapping of n/m memory blocks to one
block frame in the cache

• Placement is by using modulo-m function
• Bj Bi if i=j mod m
• Unique block frame Bi that each Bj loads into.
• Simplest organization to implement
• No way to implement replacement policy.

EENG-630 Chapter 5 53

Direct Mapping Cache

EENG-630 Chapter 5 54

Direct Mapping Cache

• Advantages
– Simple hardware
– No associative search
– No page replacement

policy
– Lower cost
– Higher speed

• Disadvantages
– Rigid mapping
– Poorer hit ratio
– Prohibits parallel virtual

address translation
– Use larger cache size

with more block frames
to avoid contention

EENG-630 Chapter 5 55

Fully Associative Cache

• Each block in main memory can be placed in
any of the available block frames

• s-bit tag needed in each cache block (s > r)
• An m-way associative search requires the tag

to be compared w/ all cache block tags
• Use an associative memory to achieve a

parallel comparison w/all tags concurrently

EENG-630 Chapter 5 56

Fully Associative Cache

EENG-630 Chapter 5 57

Fully Associative Caches

• Advantages:
– Offers most flexibility in

mapping cache blocks
– Higher hit ratio
– Allows better block

replacement policy with
reduced block
contention

• Disadvantages:
– Higher hardware cost
– Only moderate size

cache
– Expensive search

process

EENG-630 Chapter 5 58

Set Associative Caches

• In a k-way associative cahe, the m cache block
frames are divided into v=m/k sets, with k
blocks per set

• Each set is identified by a d-bit set number
– v=2d

• Compare the tag w/the k tags w/in the
identified set

• Bj  Bf  Si if j(mod v) = i

EENG-630 Chapter 5 59

EENG-630 Chapter 5 60

Sector Mapping Cache

• Partition cache and main memory into fixed
size sectors then use fully associative search

• Use sector tags for search and block fields
within sector to find block

• Only missing block loaded for a miss
• The ith block in a sector placed into the th

block frame in a destined sector frame
• Attach a valid/invalid bit to block frames

EENG-630 Chapter 5 61

EENG-630 Chapter 5 62

Cache Performance Issues

• Cycle count: # of m/c cycles needed for cache access,
update, and coherence

• Hit ratio: how effectively the cache can reduce the
overall memory access time

• Program trace driven simulation: present snapshots
of program behavior and cache responses

• Analytical modeling: provide insight into the
underlying processes

EENG-630 Chapter 5 63

Cycle Counts

• Cache speed affected by underlying static or
dynamic RAM technology, organization, and
hit ratios

• Write-thru/write-back policies affect count
• Cache size, block size, set number, and

associativity affect count
• Directly related to hit ratio

EENG-630 Chapter 5 64

Hit Ratio

• Affected by cache size and block size
• Increases w.r.t. increasing cache size
• Limited cache size, initial loading, and changes

in locality prevent 100% hit ratio

EENG-630 Chapter 5 65

Effect of Block Size

• With fixed cache size, block size has impact
• As block size increases, hit ratio improves due

to spatial locality
• Peaks at optimum block size, then decreases
• If too large, many words in cache not used

EENG-630 Chapter 5 66

Cache performance

5.3 Shared memory organization

In computer science, shared memory is memory that may be
simultaneously accessed by multiple programs with an intent to
provide communication among them or avoid redundant copies.

Shared memory is an efficient means of passing data between
programs. Depending on context, programs may run on a single
processor or on multiple separate processors.

69

Characteristics of shared memory systems

• Any processor can directly reference any memory
location.

• Communication occurs implicitly as result of
loads and stores.

• Location of data in memory is transparent to the
programmer.

• Inherently provided on wide range of platforms.
• Memory may be physically distributed among

processors.

EENG-630 Chapter 5 70

Interleaved Memory Organization

• Goal is to close the speed gap b/t CPU/cache
and main memory access

• Provides higher b/w for pipelined access of
contiguous memory locations

EENG-630 Chapter 5 71

Memory Interleaving

• Main memory has multiple modules
connected to system bus or n/w

• Can present different addresses to different
modules for parallel/pipelined access

• m=2a modules, w/ w= 2b words
• Varying linear address assignments
• Have random and block accesses

EENG-630 Chapter 5 72

Addressing Formats

• Low-order interleaving: spread contiguous
locations across modules horizontally
– Lower a bits identify module, b for word
– Supports block access in pipeline fashion

• High-order: contiguous locations within same
module
– Higher a bits identify module, b for word
– Cannot support block access

EENG-630 Chapter 5 73

EENG-630 Chapter 5 75

Pipelined Memory Access

• Overlap access of m memory modules
• Major cycle divided into m minor cycles
•  = /m m=degree of interleaving
• =total time to complete access of one word
• =actual time to produce one word
• Total block access time is 2
• Effective access time of each word is 

ss2

Slide 75

ss2 important
sunil shetty, 11-09-2019

EENG-630 Chapter 5 76

EENG-630 Chapter 5 77

Memory Bandwidth
• Memory b/w B of m-way interleaved memory

is upper bounded by m and lower bounded by
1

• Hellerman estimate of B is
– 16 modules then B is 4 times faster than single

module.

• Based on single processor system, conflicts
reduce it further







 


n

m

m
t

1
11


Avg. time to access
one element in a vector

Fault Tolerance

EENG-630 Chapter 5 79

Higher degree of
interleaving, the
higher the
potential memory
bandwidth if the
system is fault-
free.

EENG-630 Chapter 5 80

Memory Allocation Schemes

• Virtual memory allows many s/w processes
time-shared use of main memory

• Memory manager handles the swapping
• It monitors amount of available main memory

and decides which processes should reside
and which to remove

EENG-630 Chapter 5 81

Allocation Policies

• Memory swapping: process of moving blocks
of data between memory levels

• Nonpreemptive allocation: if full, then swaps
out some of the allocated processes
– Easier to implement, less efficient

• Preemptive:has freedom to preempt an
executing process
– More complex, expensive, and flexible

EENG-630 Chapter 5 82

Allocation Policies

• Local allocation: considers only the resident
working set of the faulty process
– Used by most computers

• Global allocation: considers the history of the
working sets of all resident processes in
making a swapping decision

EENG-630 Chapter 5 83

Swapping Systems

• Allow swapping only at entire process level
• Swap device: configurable section of a disk set

aside for temp storage of data swapped
• Swap space: portion of disk set aside
• Depending on system, may swap entire

processes only, or the necessary pages

EENG-630 Chapter 5 84

EENG-630 Chapter 5 85

Swapping in UNIX

• System calls that result in a swap:
– Allocation of space for child process being created
– Increase in size of a process address space
– Increased space demand by stack for a process
– Demand for space by a returning process swapped

out previously

• Special process 0 is the swapper

EENG-630 Chapter 5 86

Demand Paging Systems

• Allows only pages to be transferred b/t main
memory and swap device

• Pages are brought in only on demand
• Allows process address space to be larger than

physical address space
• Offers flexibility to dynamically accommodate

large # of processes in physical memory on
time-sharing basis

EENG-630 Chapter 5 87

Working Sets

• Set of pages referenced by the process during
last n memory refs (n=window size)

• Only working sets of active processes are
resident in memory

EENG-630 Chapter 5 88

Other Policies

• Hybrid memory systems combine advantages
of swapping and demand paging

• Anticipatory paging prefetches pages based
on anticipation
– Difficult to implement

EENG-630 Chapter 5 89

Memory Consistency/Inconsistency

• Memory inconsistency: when memory access
order differs from program execution order

• Sequential consistency: memory accesses (I
and D) consistent with program execution
order

EENG-630 Chapter 5 90

Memory Consistency Issues

• Memory model: behavior of a shared memory
system as observed by processors

• Choosing a memory model – compromise b/t
a strong model minimally restricting s/w and a
weak model offering efficient implementation

• Primitive memory ops: load, store, swap

EENG-630 Chapter 5 91

Event Orderings

• Processes: concurrent instruction streams executing
on different processors

• Consistency models specify the order by which
events from one process should be observed by
another

• Event ordering helps determine if a memory event is
legal for concurrent accesses

• Program order: order by which memory access occur
for execution of a single process, w/o any reordering

EENG-630 Chapter 5 92

EENG-630 Chapter 5 93

Primitive Memory Operations

• Load by Pi complete wrt Pk when issue of a store to
same location by Pk does not affect value returned by
load

• Store by Pi complete wrt Pk when an issued load to
same address by Pk returns the value by this store

• Load is globally performed if it is performed wrt all
processors and if the store that is the source of the
returned value has been performed wrt to all

EENG-630 Chapter 5 94

Difficulty in Maintaining Correctness
on an MIMD

• If no synch. among instruction streams, then
large # of different instruction interleavings

• Could change execution order, leading to more
possibilities

• If accesses are not atomic, then different
processors can observe different interleavings

EENG-630 Chapter 5 95

Atomicity

• Categories of memory behavior:
– Program order preserved and uniform observation

sequence by all processors
– Out of program order allowed and uniform

observation sequence by all processors
– Out of program order allowed and nonuniform

sequences observed by different processors

EENG-630 Chapter 5 96

Atomicity

• Atomic memory accesses: memory updates
are known to all processors at the same time

• Non-atomic: having individual program orders
that conform is not a sufficient condition for
sequential consistency
– Multiprocessor cannot be strongly ordered

EENG-630 Chapter 5 97

Lamport’s Definition of Sequential
Consistency

• A multiprocessor system is sequentially
consistent if the result of any execution is the
same as if the operations of all the processors
were executed in some sequential order, and
the operations of each individual processor
appear in this sequence in the order specified
by its program

EENG-630 Chapter 5 98

Sequential Consistency

• Sufficient conditions:
– Before a load is allowed to perform wrt any other

processor, all previous loads must be globally
performed and all previous stores must be
performed wrt all processors

– Before a store is allowed to perform wrt any other
processor, all previous loads must be globally
performed and all previous stores must be
performed wrt to all processors

EENG-630 Chapter 5 99

Sequential Consistency Axioms
• The memory order conforms to a total binary order in

which shared memory is accessed in real time over all
loads/stores

• A load always returns the value written by the latest
store to the same location

• If 2 ops appear in particular program order, same
memory order

• Swap op is atomic with respect to stores. No other
store can intervene b/t load and store parts of swap

• All stores and swaps must eventually terminate

EENG-630 Chapter 5 100

Implementation Considerations

• A single port s/w services one op at a time
• Order in which s/w is thrown determines

global order of memory access ops
• Strong ordering preserves the program order

in all processors
• Sequential consistency model leads to poor

memory performance due to the imposed
strong ordering of memory events

EENG-630 Chapter 5 101

Weak Consistency Models

• Multiprocessor model may range from strong
(sequential) consistency to various degrees of
weak consistency

• Two models considered
– DSB model
– TSO model

EENG-630 Chapter 5 102

DSB Model

• All previous synch. accesses performed before
load or store allowed

• All previous load/stores performed before a
synch. allowed

• Synch. accesses sequentially consistent with
respect to one another

EENG-630 Chapter 5 103

TSO Model
• Load returns latest store result
• Memory order is a total binary relation over all pairs

of store ops
• If 2 stores appear in part. program order, same

memory order
• If a mem op follows a load in prog order, must also

follow load in mem order
• Swap op atomic with respect to other stores – no

other store can interleave b/t load/store parts of
swap

• All stores/swaps must eventually terminate

CSE539: Advanced Computer Architecture

Chapter 6

Pipelining and Superscalar

Techniques
Book: “Advanced Computer Architecture – Parallelism, Scalability, Programmability”, Hwang & Jotwani

Sumit Mittu

Assistant Professor, CSE/IT

Lovely Professional University

sumit.12735@lpu.co.in

mailto:sumit.12735@lpu.co.in

In this chapter…

• Linear Pipeline Processors

• Non-linear Pipeline Processors

• Instruction Pipeline Design

• Arithmetic Pipeline Design

• Superscalar Pipeline Design

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 2

LINEAR PIPELINE PROCESSORS

• Linear Pipeline Processor
o (Definition)

• Models of Linear Pipeline
o Synchronous Model

o Asynchronous Model

o (Corresponding reservation tables)

• Clocking and Timing Control
o Clock Cycle

o Pipeline Frequency

o Clock skewing

o Flow-through delay

o Speedup, Efficiency and Throughput

• Optimal number of Stages and Performance-Cost Ratio (PCR)

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 3

LINEAR PIPELINE PROCESSORS

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 4

LINEAR PIPELINE PROCESSORS

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 5

NON-LINEAR PIPELINE PROCESSORS

• Dynamic Pipeline
o Static v/s Dynamic Pipeline

o Streamline connection, feed-forward connection and feedback connection

• Reservation and Latency Analysis
o Reservation tables

o Evaluation time

• Latency Analysis
o Latency

o Collision

o Forbidden latencies

o Latency Sequence, Latency Cycle and Average Latency

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 6

NON-LINEAR PIPELINE PROCESSORS

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 7

NON-LINEAR PIPELINE PROCESSORS

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 8

NON-LINEAR PIPELINE PROCESSORS

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 9

INSTRUCTION PIPELINE DESIGN

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 10

• Instruction Execution Phases
o E.g. Fetch, Decode, Issue, Execute, Write-back

o In-order Instruction issuing and Reordered Instruction issuing

• E.g. X = Y + Z , A = B x C

• Mechanisms/Design Issues for Instruction Pipelining
o Pre-fetch Buffers

o Multiple Functional Units

o Internal Data Forwarding

o Hazard Avoidance

• Dynamic Scheduling

• Branch Handling Techniques

INSTRUCTION PIPELINE DESIGN

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 11

INSTRUCTION PIPELINE DESIGN

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 12

• Fetch: fetches instructions from memory; ideally one per cycle

• Decode: reveals instruction operations to be performed and identifies the resources needed

• Issue: reserves the resources and reads the operands from registers

• Execute: actual processing of operations as indicated by instruction

• Write Back: writing results into the registers

INSTRUCTION PIPELINE DESIGN

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 13

INSTRUCTION PIPELINE DESIGN

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 14

INSTRUCTION PIPELINE DESIGN

Mechanisms/Design Issues of Instruction Pipeline

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 15

• Pre-fetch Buffers
o Sequential Buffers

o Target Buffers

o Loop Buffers

INSTRUCTION PIPELINE DESIGN

Mechanisms/Design Issues of Instruction Pipeline

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 16

• Multiple Functional Units
o Reservation Station and Tags

o Slow-station as Bottleneck stage

• Subdivision of Pipeline Bottleneck stage

• Replication of Pipeline Bottleneck stage

• (Example to be discussed)

INSTRUCTION PIPELINE DESIGN

Mechanisms/Design Issues of Instruction Pipeline

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 17

INSTRUCTION PIPELINE DESIGN

Mechanisms/Design Issues of Instruction Pipeline

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 18

• Internal Forwarding and Register Tagging
o Internal Forwarding:

• A “short-circuit” technique to replace unnecessary memory accesses by register-register
transfers in a sequence of fetch-arithmetic-store operations

o Register Tagging:

• Use of tagged registers , buffers and reservation stations, for exploiting concurrent activities
among multiple arithmetic units

o Store-Fetch Forwarding

• (M  R1, R2  M) replaced by (M  R1, R2  R1)

o Fetch-Fetch Forwarding

• (R1  M, R2  M) replaced by (R1  M, R2  R1)

o Store-Store Overwriting

• (M  R1, M  R2) replaced by (M  R2)

INSTRUCTION PIPELINE DESIGN

Mechanisms/Design Issues of Instruction Pipeline

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 19

• Internal Forwarding and Register Tagging

INSTRUCTION PIPELINE DESIGN

Mechanisms/Design Issues of Instruction Pipeline

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 20

• Internal Forwarding and Register Tagging

INSTRUCTION PIPELINE DESIGN

Mechanisms/Design Issues of Instruction Pipeline

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 21

• Hazard Detection and Avoidance
o Domain or Input Set of an instruction

o Range or Output Set of an instruction

o Data Hazards: RAW, WAR and WAW

o Resolution using Register Renaming approach

INSTRUCTION PIPELINE DESIGN

Dynamic Instruction Scheduling

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 22

• Idea of Static Scheduling
o Compiler based scheduling strategy to resolve Interlocking among instructions

• Dynamic Scheduling
o Tomasulo’s Algorithm (Register-Tagging Scheme)

• Hardware based dependence-resolution

o Scoreboarding Technique

• Scoreboard: the centralized control unit

• A kind of data-driven mechanism

INSTRUCTION PIPELINE DESIGN

Dynamic Instruction Scheduling

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 23

INSTRUCTION PIPELINE DESIGN

Dynamic Instruction Scheduling

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 24

INSTRUCTION PIPELINE DESIGN

Branch Handling Techniques

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 25

• Branch Taken, Branch Target, Delay Slot

• Effect of Branching
o Parameters:

• k : No. of stages in the pipeline

• n : Total no. of instructions or tasks

• p : Percentage of Brach instructions over n

• q : Percentage of successful branch instructions (branch taken) over p.

• b : Delay Slot

• τ : Pipeline Cycle Time

o Branch Penalty = q of (p of n) * bτ = pqnbτ

o Effective Execution Time:

• Teff = [k + (n-1)] τ + pqnbτ = [k + (n-1) + pqnb]τ

INSTRUCTION PIPELINE DESIGN

Branch Handling Techniques

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 26

• Effect of Branching
o Effective Throughput:

• Heff = n/Teff

• Heff = n / {[k + (n-1) + pqnb]τ} = nf / [k + (n-1) + pqnb]

• As nInfinity and b = k-1

o H*eff = f / [pq(k-1)+1]

• If p=0 and q=0 (no branching occurs)

o H**eff = f = 1/τ

o Performance Degradation Factor

• D = 1 – H*eff / f = pq(k-1) / [pq(k-1)+1]

INSTRUCTION PIPELINE DESIGN

Branch Handling Techniques

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 27

INSTRUCTION PIPELINE DESIGN

Branch Handling Techniques

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 28

• Branch Prediction
o Static Branch Prediction: based on branch code types

o Dynamic Branch prediction: based on recent branch history

• Strategy 1: Predict the branch direction based on information found at decode stage.

• Strategy 2: Use a cache to store target addresses at effective address calculation stage.

• Strategy 3: Use a cache to store target instructions at fetch stage

o Brach Target Buffer Organization

• Delayed Branches
o A delayed branch of d cycles allows at most d-1 useful instructions to be executed following the

branch taken.

o Execution of these instructions should be independent of branch instruction to achieve a zero

branch penalty

INSTRUCTION PIPELINE DESIGN

Branch Handling Techniques

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 29

INSTRUCTION PIPELINE DESIGN

Branch Handling Techniques

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 30

ARITHMETIC PIPELINE DESIGN

Computer Arithmetic Operations

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 31

• Finite-precision arithmetic

• Overflow and Underflow

• Fixed-Point operations
o Notations:

• Signed-magnitude, one’s complement and two-complement notation

o Operations:

• Addition: (n bit, n bit)  (n bit) Sum, 1 bit output carry

• Subtraction: (n bit, n bit)  (n bit) difference

• Multiplication: (n bit, n bit)  (2n bit) product

• Division: (2n bit, n bit)  (n bit) quotient, (n bit) remainder

ARITHMETIC PIPELINE DESIGN

Computer Arithmetic Operations

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 32

• Floating-Point Numbers
o X = (m, e) representation

• m: mantissa or fraction

• e: exponent with an implied base or radix r.

• Actual Value X = m * r e

o Operations on numbers X = (mx, ex) and Y = (my, ey)

• Addition: (mx * r
ex-ey + my, ey)

• Subtraction: (mx * r
ex-ey – my, ey)

• Multiplication: (mx * my, ex+ey)

• Division: (mx / my, ex – ey)

• Elementary Functions
o Transcendental functions like: Trigonometric, Exponential, Logarithmic, etc.

ARITHMETIC PIPELINE DESIGN

Static Arithmetic Pipelines

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 33

• Separate units for fixed point operations and floating point operations

• Scalar and Vector Arithmetic Pipelines

• Uni-functional or Static Pipelines

• Arithmetic Pipeline Stages
o Majorly involve hardware to perform: Add and Shift micro-operations

o Addition using: Carry Propagation Adder (CPA) and Carry Save Adder (CSA)

o Shift using: Shift Registers

• Multiplication Pipeline Design
o E.g. To multiply two 8-bit numbers that yield a 16-bit product using CSA and CPA Wallace Tree.

ARITHMETIC PIPELINE DESIGN

Static Arithmetic Pipelines

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 34

0

ARITHMETIC PIPELINE DESIGN

Static Arithmetic Pipelines

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 35

ARITHMETIC PIPELINE DESIGN

Multifunctional Arithmetic Pipelines

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 36

• Multifunctional Pipeline:
o Static multifunctional pipeline

o Dynamic multifunctional pipeline

• Case Study: T1/ASC static multifunctional pipeline architecture

ARITHMETIC PIPELINE DESIGN

Multifunctional Arithmetic Pipelines

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 37

ARITHMETIC PIPELINE DESIGN

Multifunctional Arithmetic Pipelines

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 38

SUPERSCALAR PIPELINE DESIGN

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 39

• Pipeline Design Parameters
o Pipeline cycle, Base cycle, Instruction issue rate, Instruction issue Latency, Simple Operation Latency

o ILP to fully utilize the pipeline

• Superscalar Pipeline Structure

• Data and Resource Dependencies

• Pipeline Stalling

• Superscalar Pipeline Scheduling
o In-order Issue and in-order completion

o In-order Issue and out-of-order completion

o Out-of-order Issue and out-of-order completion

• Superscalar Performance

SUPERSCALAR PIPELINE DESIGN

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 40

Parameter Base Scalar Processor Super Scalar Processor

(degree = K)

Pipeline Cycle 1 (base cycle) K

Instruction Issue Rate 1 K

Instruction Issue Latency 1 1

Simple Operation Latency 1 1

ILP to fully utilize pipeline 1 K

SUPERSCALAR PIPELINE DESIGN

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 41

4,

SUPERSCALAR PIPELINE DESIGN

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 42

SUPERSCALAR PIPELINE DESIGN

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 43

SUPERSCALAR PIPELINE DESIGN

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 44

SUPERSCALAR PIPELINE DESIGN

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 45

SUPERSCALAR PIPELINE DESIGN

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 46

SUPERSCALAR PIPELINE DESIGN

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 47

4,

SUPERSCALAR PIPELINE DESIGN

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 48

SUPERSCALAR PIPELINE DESIGN

Sumit Mittu, Assistant Professor, CSE/IT, Lovely Professional University 49

• Time required by base scalar machine:
o T(1,1) = K + N – 1

• The ideal execution time required by m-issue superscalar machine:
o T(m,1) = K + (N – m)/m

o Where,

• K is the time required to execute first m instructions through m pipelines of k-stages
simultaneously

• Second term corresponds to time required to execute remaining N-m instructions , m per
cycle through m pipelines

• The ideal speedup of superscalar machine
o S(m,1) = T(1,1)/T(m,1) = m(N + k – 1)/[N+ m(k – 1)]

• As n  infinity, S(m,1) m

