
Transport Layer 2-1

Module 2:Transport Layer

our goals: 
 understand principles 

behind transport 
layer services:
 multiplexing, 

demultiplexing
 reliable data transfer
 flow control
 congestion control

 learn about Internet 
transport layer protocols:
 UDP: connectionless 

transport
 TCP: connection-oriented 

reliable transport
 TCP congestion control



Transport Layer 2-2

Module 2 outline

2.1 transport-layer 
services

2.2 multiplexing and 
demultiplexing

2.3 connectionless 
transport: UDP

2.4 principles of reliable 
data transfer

2.5 connection-oriented 
transport: TCP
 segment structure
 reliable data transfer
 flow control
 connection management

2.6 principles of congestion 
control

2.7 TCP congestion control



Transport Layer 2-3

Transport services and protocols
 provide logical communication

between app processes 
running on different hosts

 transport protocols run in 
end systems 
 send side: breaks app 

messages into segments, 
passes to  network layer

 rcv side: reassembles 
segments into messages, 
passes to app layer

 more than one transport 
protocol available to apps
 Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

 Transport vs. network layer



Transport Layer 2-4

Internet transport-layer protocols

 reliable, in-order 
delivery (TCP)
 congestion control 
 flow control
 connection setup

 unreliable, unordered 
delivery: UDP
 no-frills extension of 
“best-effort” IP

 services not available: 
 delay guarantees
 bandwidth guarantees

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical



Transport Layer 2-5

Multiplexing/demultiplexing

process

socket

use header info to deliver
received segments to correct 
socket

demultiplexing at receiver:handle data from multiple
sockets, add transport header 
(later used for demultiplexing)

multiplexing at sender:

transport

application

physical

link

network

P2P1

transport

application

physical

link

network

P4

transport

application

physical

link

network

P3



Transport Layer 2-6

How demultiplexing works

 host receives IP datagrams
 each datagram has source IP 

address, destination IP 
address

 each datagram carries one 
transport-layer segment

 each segment has source, 
destination port number 

 host uses IP addresses & 
port numbers to direct 
segment to appropriate 
socket

source port # dest port #

32 bits

application
data 

(payload)

other header fields

TCP/UDP segment format



Transport Layer 2-7

Connectionless demultiplexing

clientSocket = 
socket(socket.AF_INET, 
socket.SOCK_DGRAM)

 when host receives UDP 
segment:
 checks destination port # 

in segment
 directs UDP segment to 

socket with that port #

 recall: when creating 
datagram to send into UDP 
socket, must specify
 destination IP address
 destination port #

IP datagrams with same 
dest. port #, but different 
source IP addresses and/or 
source port numbers will 
be directed to same socket 
at dest



Transport Layer 2-8

Connectionless demux: example
DatagramSocket 
serverSocket = new 
DatagramSocket
(6428);

transport

application

physical

link

network

P3
transport

application

physical

link

network

P1

transport

application

physical

link

network

P4

DatagramSocket 
mySocket1 = new 
DatagramSocket 
(5775);

DatagramSocket 
mySocket2 = new 
DatagramSocket
(9157);

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: ?
dest port: ?

source port: ?
dest port: ?



Transport Layer 2-9

Connection-oriented demux

 TCP socket identified 
by 4-tuple: 
 source IP address
 source port number
 dest IP address
 dest port number

 demux: receiver uses 
all four values to direct 
segment to appropriate 
socket

 server host may support 
many simultaneous TCP 
sockets:
 each socket identified by 

its own 4-tuple

 web servers have 
different sockets for 
each connecting client
 non-persistent HTTP will 

have different socket for 
each request



Transport Layer 2-10

Connection-oriented demux: example

transport

application

physical

link

network

P3
transport

application

physical

link

P4

transport

application

physical

link

network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host: IP 
address A

host: IP 
address C

network

P6P5
P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

server: IP 
address B



Transport Layer 2-11

UDP: User Datagram Protocol [RFC 768]

 “best effort” service, UDP 
segments may be:
 lost
 delivered out-of-order 

to app
 connectionless:

 no handshaking 
between UDP sender, 
receiver

 each UDP segment 
handled independently 
of others

 UDP use:
 streaming multimedia 

apps (loss tolerant, rate 
sensitive)

 DNS
 SNMP

 reliable transfer over 
UDP: 
 add reliability at 

application layer
 application-specific error 

recovery!



Transport Layer 2-12

UDP: segment header

source port # dest port #

32 bits

application
data 

(payload)

UDP segment format

length checksum

length, in bytes of 
UDP segment, 

including header

 no connection 
establishment (which can 
add delay)

 simple: no connection 
state at sender, receiver

 small header size
 no congestion control: 

UDP can blast away as 
fast as desired

why is there a UDP?



Transport Layer 3-13



Transport Layer 2-14

UDP checksum

sender:
 treat segment contents, 

including header fields,  
as sequence of 16-bit 
integers

 checksum: addition 
(one’s complement sum) 
of segment contents

 sender puts checksum 
value into UDP 
checksum field

 receiver: all 3 16-bit 
words are added, 
including the checksum.

 If no errors are 
introduced into the 
packet, 

 sum at the receiver will 
be 1111111111111111.

 If one of the bits is a 0, 
errors have been 
introduced into the 
packet.

Goal: detect “errors” (e.g., flipped bits) in transmitted 
segment



Transport Layer 2-15

Internet checksum: example

example: add two 16-bit integers

1 1  1  1  0  0  1  1  0  0  1  1  0  0  1  1  0
1 1  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1

1  1  0  1  1  1  0  1  1  1  0  1  1  1  0  1  1

1 1  0  1  1  1  0  1  1  1  0  1  1  1  1  0  0
1 0  1  0  0  0  1  0  0  0  1  0  0  0  0  1  1

wraparound

sum
checksum



Transport Layer 2-16

Principles of reliable data transfer



Transport Layer 2-17

Principles of reliable data transfer
 important in application, transport, link layers

 characteristics of unreliable channel will determine 
complexity of reliable data transfer protocol (rdt)



Transport Layer 2-18

 characteristics of unreliable channel will determine 
complexity of reliable data transfer protocol (rdt)

Principles of reliable data transfer
 important in application, transport, link layers



Transport Layer 2-19

 characteristics of unreliable channel will determine 
complexity of reliable data transfer protocol (rdt)

 important in application, transport, link layers

Principles of reliable data transfer



Transport Layer 2-20

Reliable data transfer: getting started

send
side

receive
side

rdt_send(): called from above, 
(e.g., by app.). Passed data to 
deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over 

unreliable channel to receiver

rdt_rcv(): called when packet 
arrives on rcv-side of channel

deliver_data(): called by 
rdt to deliver data to upper



Transport Layer 2-21

we’ll:
 incrementally develop sender, receiver sides of 

reliable data transfer protocol (rdt)
 consider only unidirectional data transfer

 but control info will flow on both directions!
 use finite state machines (FSM)  to specify sender, 

receiver

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this 
“state” next state 

uniquely determined 
by next event

event
actions

Reliable data transfer: getting started



 A finite state machine or finite automaton is 
a model of behavior composed of states, 
transitions and actions. 
 A state stores information about the past, i.e. it reflects 

the input changes from the system start to the present 
moment. 

 A transition indicates a state change and is described 
by a condition/event that would need to be fulfilled to 
enable the transition. 

 An action is a description of an activity that is to be 
performed at a given moment. 

Finite State Machines



Transport Layer 2-23

rdt1.0: reliable transfer over a reliable channel

 underlying channel perfectly reliable
 no bit errors
 no loss of packets

 separate FSMs for sender, receiver:
 sender sends data into underlying channel
 receiver reads data from underlying channel

Wait for 
call from 
above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

extract(packet,data)
deliver_data(data)

Wait for 
call from 

below

rdt_rcv(packet)

sender receiver



Transport Layer 2-24

 underlying channel may flip bits in packet
 checksum to detect bit errors

 the question: how to recover from errors:
 acknowledgements (ACKs): receiver explicitly tells 

sender that pkt received OK
 negative acknowledgements (NAKs): receiver explicitly 

tells sender that pkt had errors
 sender retransmits pkt on receipt of NAK

 new mechanisms in rdt2.0 (beyond rdt1.0):
 Error detection
 Receiver feedback: control messages (ACK,NAK) from 

receiver to sender
 Retransmission

rdt2.0: channel with bit errors(ARQ)



Transport Layer 2-25

rdt2.0: FSM specification

Wait for 
call from 
above

sndpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && 
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && 
corrupt(rcvpkt)

Wait for 
ACK or 

NAK

Wait for 
call from 

belowsender

receiver
rdt_send(data)

L



Transport Layer 2-26

rdt2.0: operation with no errors

Wait for 
call from 
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && 
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && 
corrupt(rcvpkt)

Wait for 
ACK or 

NAK

Wait for 
call from 

below

rdt_send(data)

L



Transport Layer 2-27

rdt2.0: error scenario

Wait for 
call from 
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && 
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && 
corrupt(rcvpkt)

Wait for 
ACK or 

NAK

Wait for 
call from 

below

rdt_send(data)

L



Transport Layer 2-28

rdt2.0 has a fatal flaw!

what happens if 
ACK/NAK corrupted?

 sender doesn’t know what 
happened at receiver!

 can’t just retransmit: 
possible duplicate

handling duplicates: 
 sender retransmits current 

pkt if ACK/NAK 
corrupted

 sender adds sequence 
number to each pkt

 receiver discards (doesn’t 
deliver up) duplicate pkt



Transport Layer 2-29

rdt2.1: sender, handles garbled ACK/NAKs

Wait for 
call 0 from 

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

Wait for 
ACK or 
NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt) 
|| isNAK(rcvpkt) )

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt) 

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||
isNAK(rcvpkt) )

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt)

Wait for
call 1 from 

above

Wait for 
ACK or 
NAK 1

L
L



Transport Layer 3-30



Transport Layer 2-31

Wait for 
0 from 
below

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && 
not corrupt(rcvpkt) &&
has_seq0(rcvpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Wait for 
1 from 
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 
&& has_seq0(rcvpkt) 

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && 
not corrupt(rcvpkt) &&
has_seq1(rcvpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt2.1: receiver, handles garbled ACK/NAKs

Sender re-sends seq# 0 
due to a garbled ACK/NAK



Transport Layer 3-32



Transport Layer 2-33

rdt2.1: discussion

sender:
 seq # added to pkt
 two seq. #’s (0,1) will 

suffice.  Why?
 must check if received 

ACK/NAK corrupted 
 twice as many states

 state must 
“remember” whether 
“expected” pkt should 
have seq # of 0 or 1 

receiver:
 must check if received 

packet is duplicate
 state indicates whether 

0 or 1 is expected pkt
seq #

 note: receiver can not
know if its last 
ACK/NAK received 
OK at sender



Transport Layer 2-34

rdt2.2: a NAK-free protocol

 same functionality as rdt2.1, using ACKs only
 instead of NAK, receiver sends ACK for last pkt

received OK
 receiver must explicitly include seq # of pkt being ACKed

 duplicate ACK at sender results in same action as 
NAK: retransmit current pkt



Transport Layer 2-35



Transport Layer 3-36



Transport Layer 2-37

rdt2.2: sender, receiver fragments

Wait for 
call 0 from 

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||

isACK(rcvpkt,1) )

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt,0)

Wait for 
ACK

0

sender FSM
fragment

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 
&& has_seq1(rcvpkt) 

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK1, chksum)
udt_send(sndpkt)

Wait for 
0 from 
below

rdt_rcv(rcvpkt) && 
(corrupt(rcvpkt) ||

has_seq1(rcvpkt))

udt_send(sndpkt)

receiver FSM
fragment

L



Transport Layer 2-38

rdt3.0: channels with errors and loss

new assumption:
underlying channel can 
also lose packets 
(data, ACKs)
 checksum, seq. #, 

ACKs, retransmissions 
will be of help … but 
not enough

approach: sender waits 
“reasonable” amount of 
time for ACK 

 retransmits if no ACK 
received in this time

 if pkt (or ACK) just delayed 
(not lost):
 retransmission will be  

duplicate, but seq. #’s 
already handles this

 receiver must specify seq 
# of pkt being ACKed

 requires countdown timer



Transport Layer 2-39

rdt3.0 sender
sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

Wait 
for 

ACK0

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||
isACK(rcvpkt,1) )

Wait for 
call 1 from 

above

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||
isACK(rcvpkt,0) )

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt,1)

stop_timer
stop_timer

udt_send(sndpkt)
start_timer

timeout

udt_send(sndpkt)
start_timer

timeout

rdt_rcv(rcvpkt)

Wait for 
call 0from 

above

Wait 
for 

ACK1

L
rdt_rcv(rcvpkt)

L
L

L



Transport Layer 2-40

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

pkt1

ack1

ack0

ack0

(a) no loss

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

ack1

ack0

ack0

(b) packet loss

pkt1
X

loss

pkt1
timeout

resend pkt1

rdt3.0 in action



Transport Layer 2-41

rdt3.0 in action

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

ack1

ack0

ack0

(c) ACK loss

ack1
X

loss

pkt1
timeout

resend pkt1

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

send ack0
rcv ack0

send pkt1

send pkt0
rcv pkt0

pkt0

ack0

(d) premature timeout/ delayed ACK

pkt1
timeout

resend pkt1

ack1

send ack1

send pkt0
rcv ack1

pkt0

ack1

ack0

send pkt0
rcv ack1 pkt0

rcv pkt0
send ack0ack0

rcv pkt0

send ack0
(detect duplicate)



Transport Layer 2-42

Performance of rdt3.0

 rdt3.0 is correct, but performance stinks
 e.g.: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

 U sender: utilization – fraction of time sender busy sending

U sender = 
.008 

30.008 
= 0.00027  

L / R 

RTT + L / R 
= 

 if RTT=30 msec, 1KB pkt every 30 msec: 33kB/sec 
throughput over 1 Gbps link

 network protocol limits use of physical resources!

Dtrans =
L
R

8000 bits
109 bits/sec= = 8 microsecs



Transport Layer 2-43

rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next 
packet, t = RTT + L / R

U 
sender = 

.008 
30.008 

= 0.00027  
L / R 

RTT + L / R 
= 



Transport Layer 2-44

Pipelined protocols

pipelining: sender allows multiple, “in-flight”, yet-
to-be-acknowledged pkts
 range of sequence numbers must be increased
 buffering at sender and/or receiver

 two generic forms of pipelined protocols: go-Back-N, 
selective repeat



Transport Layer 2-45

Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT 

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next 
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

3-packet pipelining increases
utilization by a factor of 3!

U 
sender = 

.0024 
30.008 

= 0.00081  
3L / R 

RTT + L / R 
= 



Transport Layer 2-46

Pipelined protocols: overview

Go-back-N:
 sender can have up to 

N unacked packets in 
pipeline

 receiver only sends 
cumulative ack
 doesn’t ack packet if 

there’s a gap
 sender has timer for 

oldest unacked packet
 when timer expires, 

retransmit all unacked 
packets

Selective Repeat:
 sender can have up to N 

unack’ed packets in 
pipeline

 receiver sends individual 
ack for each packet

 sender maintains timer 
for each unacked packet
 when timer expires, 

retransmit only that 
unacked packet



Transport Layer 2-47

Go-Back-N: sender’s view of seq. no in GBN



Transport Layer 2-48

GBN: sender extended FSM

Wait start_timer
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
…
udt_send(sndpkt[nextseqnum-1])

timeout

rdt_send(data)

if (nextseqnum < base+N) {
sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextseqnum])
if (base == nextseqnum)

start_timer
nextseqnum++
}

else
refuse_data(data)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)

stop_timer
else

start_timer

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt) 

base=1
nextseqnum=1

rdt_rcv(rcvpkt) 
&& corrupt(rcvpkt)

L

L



Transport Layer 2-49

ACK-only: always send ACK for correctly-received 
pkt with highest in-order seq #
 may generate duplicate ACKs
 need only remember expectedseqnum

 out-of-order pkt: 
 discard (don’t buffer): no receiver buffering!
 re-ACK pkt with highest in-order seq #

Wait

udt_send(sndpkt)

default

rdt_rcv(rcvpkt)
&& notcurrupt(rcvpkt)
&& hasseqnum(rcvpkt,expectedseqnum) 

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

expectedseqnum=1
sndpkt =    

make_pkt(expectedseqnum,ACK,chksum)

L

GBN: receiver extended FSM



Transport Layer 2-50

GBN in action

send  pkt0
send  pkt1
send  pkt2
send  pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, discard, 
(re)send ack1rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send  pkt2
send  pkt3
send  pkt4
send  pkt5

Xloss

receive pkt4, discard, 
(re)send ack1

receive pkt5, discard, 
(re)send ack1

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

ignore duplicate ACK

0 1 2 3 4 5 6 7 8 

sender window (N=4)

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 



Transport Layer 2-51

Selective repeat

 receiver individually acknowledges all correctly 
received pkts
 buffers pkts, as needed, for eventual in-order delivery 

to upper layer
 sender only resends pkts for which ACK not 

received
 sender timer for each unACKed pkt

 sender window
 N consecutive seq #’s
 limits seq #s of sent, unACKed pkts



Transport Layer 2-52

Selective repeat: sender, receiver windows



Transport Layer 2-53

Selective repeat

data from above:
 if next available seq # in 

window, send pkt
timeout(n):
 resend pkt n, restart 

timer
ACK(n) in [sendbase,sendbase+N]:

 mark pkt n as received
 if n smallest unACKed

pkt, advance window base 
to next unACKed seq # 

sender
pkt n in [rcvbase, rcvbase+N-1]

 send ACK(n)
 out-of-order: buffer
 in-order: deliver (also 

deliver buffered, in-order 
pkts), advance window to 
next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

 ACK(n)
otherwise:
 ignore 

receiver



Transport Layer 2-54

Selective repeat in action

send  pkt0
send  pkt1
send  pkt2
send  pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, buffer, 
send ack3rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send  pkt2

Xloss

receive pkt4, buffer, 
send ack4

receive pkt5, buffer, 
send ack5

rcv pkt2; deliver pkt2,
pkt3, pkt4, pkt5; send ack2

record ack3 arrived

0 1 2 3 4 5 6 7 8 

sender window (N=4)

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 

record ack4 arrived

record ack5 arrived

Q: what happens when ack2 does not arrive?



Transport Layer 2-55

Selective repeat:
dilemma

example: 
 seq #’s: 0, 1, 2, 3
 window size=3

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2X
X
X

will accept packet
with seq number 0

(b) oops!

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2
pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X

will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

(a) no problem

receiver can’t see sender side.
receiver behavior identical in both cases!

something’s (very) wrong!

 receiver sees no 
difference in two 
scenarios!

 duplicate data 
accepted as new in 
(b)

Q: what relationship 
between seq # size 
and window size to 
avoid problem in (b)?

A: window size <= ½(seq# size)



Transport Layer 2-56

Chapter 2 outline

2.1 transport-layer 
services

2.2 multiplexing and 
demultiplexing

2.3 connectionless 
transport: UDP

2.4 principles of reliable 
data transfer

2.5 connection-oriented 
transport: TCP
 segment structure
 reliable data transfer
 flow control
 connection management

2.6 principles of congestion 
control

2.7 TCP congestion control



Transport Layer 2-57

TCP: Overview  RFCs: 793,1122,1323, 2018, 2581

 full duplex data:
 bi-directional data flow 

in same connection
 MSS: maximum segment 

size
 connection-oriented:

 handshaking (exchange 
of control msgs) inits
sender, receiver state 
before data exchange

 flow controlled:
 sender will not 

overwhelm receiver

 point-to-point:
 one sender, one receiver

 reliable, in-order byte 
steam:
 no “message 

boundaries”
 pipelined:

 TCP congestion and 
flow control set window 
size



Transport Layer 2-58

TCP segment structure

source port # dest port #

32 bits

application
data 

(variable length)

sequence number

acknowledgement number

receive window

Urg data pointerchecksum

FSRPAU
head
len

not
used

options (variable length)

URG: urgent data 
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

# bytes 
rcvr willing
to accept

counting
by bytes 
of data
(not segments!)

Internet
checksum

(as in UDP)



Transport Layer 2-59



Transport Layer 2-60

TCP seq. numbers, ACKs

sequence numbers:
byte stream “number” of 

first byte in segment’s 
data

acknowledgements:
seq # of next byte 

expected from other side
cumulative ACK

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

incoming segment to sender

A

sent 
ACKed

sent, not-
yet ACKed
(“in-
flight”)

usable
but not 
yet sent

not 
usable

window size
N

sender sequence number space 

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

outgoing segment from sender



Transport Layer 2-61

TCP seq. numbers, ACKs

User
types
‘C’

host ACKs
receipt 

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

simple telnet scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80



Transport Layer 2-62

TCP reliable data transfer
IP does not
1. guarantee datagram delivery,
2. guarantee in-order delivery of datagrams,
3. guarantee the integrity of the data in the datagrams.

With IP service,
• datagrams can overflow router buffers and never reach their

destination,
• It can arrive out of order
• bits in the datagram can get corrupted



Transport Layer 2-63

TCP sender events:

Assumption:
• sender is not constrained by

• TCP flow control
• congestion control

• data from above is less than MSS in size
• data transfer is in one direction only



Transport Layer 2-64

TCP sender (simplified)

wait
for 

event

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

L

create segment, seq. #: NextSeqNum
pass segment to IP (i.e., “send”)
NextSeqNum = NextSeqNum + length(data) 
if (timer currently not running)

start timer

data received from application above

retransmit not-yet-acked segment         
with smallest seq. #

start timer

timeout

if (y > SendBase) { 
SendBase = y 
/* SendBase–1: last cumulatively ACKed byte */
if (there are currently not-yet-acked segments)

start timer
else stop timer 

} 

ACK received, with ACK field value y 



Transport Layer 3-65



Transport Layer 2-66

TCP: retransmission scenarios

lost ACK scenario

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

Xtim
eo

ut

ACK=100

premature timeout

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92,  8
bytes of data

tim
eo

ut

ACK=120

Seq=100, 20 bytes of data

ACK=120

SendBase=100

SendBase=120

SendBase=120

SendBase=92



Transport Layer 2-67

TCP: retransmission scenarios

X

cumulative ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=120,  15 bytes of data

tim
eo

ut

Seq=100, 20 bytes of data

ACK=120



Transport Layer 2-68

TCP fast retransmit

 time-out period  often 
relatively long:
 long delay before 

resending lost packet
 detect lost segments 

via duplicate ACKs.
 sender often sends 

many segments back-
to-back

 if segment is lost, there 
will likely be many 
duplicate ACKs.

if sender receives 3 
ACKs for same data
(“triple duplicate ACKs”),
resend unacked
segment with smallest 
seq #
 likely that unacked

segment lost, so don’t 
wait for timeout

TCP fast retransmit

(“triple duplicate ACKs”),



Transport Layer 2-69

X

fast retransmit after sender 
receipt of triple duplicate ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

tim
eo

ut ACK=100

ACK=100

ACK=100

TCP fast retransmit

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data



Transport Layer 3-70



Transport Layer 2-71

TCP ACK generation

event at receiver

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

arrival of in-order segment with
expected seq #. One other 
segment has ACK pending

arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

arrival of segment that 
partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single cumulative 
ACK, ACKing both in-order segments 

immediately send duplicate ACK,
indicating seq. # of next expected byte

immediate send ACK, provided that
segment starts at lower end of gap



Flow control

Transport Layer 2-72

• TCP provides a flow-control
service to its applications to
eliminate the possibility of the
sender overflowing the
receiver’s buffer.

• Flow control is thus a speed-
matching service—matching the
rate at which the sender is
sending against the rate at which
the receiving application is
reading.

• TCP provides flow control by
having the sender maintain a
variable called the receive
window.



Transport Layer 2-73

• the receive window is used to give the sender an idea of how much free buffer space
is available at the receiver. Because TCP is full-duplex, the sender at each side of the
connection maintains a distinct receive window.

• Host Ais sending a large file to Host B over a TCP connection. Host B allocates a
receive buffer to this connection; denote its size by RcvBuffer.

• From time to time, the application process in Host B reads from the buffer. Define
the following variables:
• LastByteRead: the number of the last byte in the data stream read from the

buffer by the application process in B
• LastByteRcvd: the number of the last byte in the data stream that has arrived

from the network and has been placed in the receive buffer at B



Transport Layer 2-74

Connection Management
before exchanging data, sender/receiver “handshake”:
 agree to establish connection (each knowing the other willing 

to establish connection)
 agree on connection parameters

connection state: ESTAB
connection variables:

seq # client-to-server
server-to-client

rcvBuffer size
at server,client

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
server-to-client

rcvBuffer size
at server,client 

application

network

Socket clientSocket =   
newSocket("hostname","port 
number");

Socket connectionSocket = 
welcomeSocket.accept();





Transport Layer 2-76

TCP 3-way handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x) 
indicates server is live;
send ACK for SYNACK;

this segment may contain 
client-to-server data

received ACK(y) 
indicates client is live

SYNSENT

ESTAB

SYN RCVD

client state

CLOSED

server state

LISTEN



Transport Layer 2-77

TCP 3-way handshake: FSM

closed

L

listen

SYN
rcvd

SYN
sent

ESTAB

Socket clientSocket =   
newSocket("hostname","port 
number");

SYN(seq=x)

Socket connectionSocket = 
welcomeSocket.accept();

SYN(x)
SYNACK(seq=y,ACKnum=x+1)

create new socket for 
communication back to client

SYNACK(seq=y,ACKnum=x+1)

ACK(ACKnum=y+1)
ACK(ACKnum=y+1)

L



Transport Layer 2-78

TCP: closing a connection

 client, server each close their side of connection
 send TCP segment with FIN bit = 1

 respond to received FIN with ACK
 on receiving FIN, ACK can be combined with own FIN

 simultaneous FIN exchanges can be handled



Transport Layer 2-79

FIN_WAIT_2

CLOSE_WAIT

wait for server
close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait 
for 2*max 

segment lifetime

CLOSED

TCP: closing a connection

FIN_WAIT_1 can no longer
send but can
receive data

clientSocket.close()

client state server state

ESTABESTAB



Transport Layer 2-80



Transport Layer 2-81

congestion:
 informally: “too many sources sending too much 

data too fast for network to handle”
 different from flow control!
 manifestations:
 lost packets (buffer overflow at routers)
 long delays (queueing in router buffers)

Principles of congestion control



Transport Layer 2-82

Causes/costs of congestion: scenario 1

 two senders, two 
receivers

 one router, infinite 
buffers 

 output link capacity: R
 no retransmission

 maximum per-connection 
throughput: R/2

unlimited shared 
output link buffers

Host A

original data: lin

Host B

throughput: lout

R/2

R/2

l o
u

t

lin R/2

d
el

ay

lin

 large delays as arrival rate, lin, 
approaches capacity



Transport Layer 2-83

 one router, finite buffers 
 sender retransmission of timed-out packet

 application-layer input = application-layer output: lin = 
lout

 transport-layer input includes retransmissions : lin lin

finite shared output 
link buffers

Host A

lin : original data

Host B

loutl'in: original data, plus
retransmitted data

‘

Causes/costs of congestion: scenario 2



Transport Layer 2-84

idealization: perfect 
knowledge

 sender sends only when 
router buffers available 

finite shared output 
link buffers

lin : original data
loutl'in: original data, plus

retransmitted data

copy

free buffer space!

R/2

R/2

l o
u

t

lin

Causes/costs of congestion: scenario 2

Host B

A



Transport Layer 3-85

lin : original data
loutl'in: original data, plus

retransmitted data

copy

no buffer space!

Idealization: known loss
packets can be lost, 
dropped at router due  
to full buffers

 sender only resends if 
packet known to be lost

Causes/costs of congestion: scenario 2

A

Host B



Transport Layer 3-86

lin : original data
loutl'in: original data, plus

retransmitted data

free buffer space!

Causes/costs of congestion: scenario 2

Idealization: known loss
packets can be lost, 
dropped at router due  
to full buffers

 sender only resends if 
packet known to be lost

R/2

R/2lin

l o
u

t

A

Host B



Transport Layer 3-87

A

lin loutl'in
copy

free buffer space!

timeout

Host B

Realistic: duplicates
 packets can be lost, dropped 

at router due  to full buffers
 sender times out prematurely, 

sending two copies, both of 
which are delivered

Causes/costs of congestion: scenario 2



Transport Layer 3-88

“costs” of congestion:
 more work (retransmit)
 unneeded retransmissions: link carries multiple copies of pkt

 decreasing good throughput

Causes/costs of congestion: scenario 2



Transport Layer 2-89

 four senders
 multihop paths
 timeout/retransmit

finite shared output 
link buffers

Host A lout

Causes/costs of congestion: scenario 3

Host B

Host C
Host D

lin : original data

l'in: original data, plus
retransmitted data



Transport Layer 2-90

another “cost” of congestion:
 when packet dropped, any “upstream 

transmission capacity used for that packet was 
wasted!

Causes/costs of congestion: scenario 3

l o
ut

lin
’



Transport Layer 2-91

Approaches towards congestion control

two broad approaches towards congestion control:

end-end congestion 
control:

 no explicit feedback 
from network

 congestion inferred 
from end-system 
observed loss, delay

 approach taken by 
TCP

network-assisted 
congestion control:

 routers/switches provide 
feedback to end systems
 single bit indicating 

congestion (SNA, 
DECbit, TCP/IP ECN, 
ATM)
Explicit feedback



Transport Layer 3-92



Transport Layer 2-93

Case study: ATM ABR congestion control

ABR: available bit rate: 
in ATM

RM (resource management) 
cells:

 sent by sender, interspersed 
with data cells ( RM cell)

 bits in RM cell set by 
switches (“network-assisted”) 
 NI bit: no increase in rate 

(mild congestion)
 CI bit: congestion 

indication
 RM cells returned to sender 

by receiver,



Transport Layer 2-94

Case study: ATM ABR congestion control

 two-byte ER (explicit rate) field in RM cell
 congested switch may lower ER value in cell
 Set to min supportable rate of all switches on source to destination 

path

 EFCI (Explicit Forward CI) bit in data cells: set to 1 in 
congested switch
 if data cell preceding RM cell has EFCI set, receiver sets CI bit in 

returned RM cell

RM cell data cell



Transport Layer 2-95

TCP congestion control: additive increase 
multiplicative decrease

 approach: sender increases transmission rate (window
size), probing for usable bandwidth, until loss occurs
 additive increase: increase cwnd by 1 MSS every

RTT until loss detected
multiplicative decrease: cut cwnd in half after loss

c
w
n
d
:

T
C

P
 s

e
nd

er
 

co
n

ge
st

io
n 

w
in

d
ow

 s
iz

e

AIMD saw tooth
behavior: probing

for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

time



Transport Layer 2-96

TCP Congestion Control: details

TCP sending rate:
 roughly: send cwnd

bytes, wait RTT for 
ACKS, then send 
more bytes

last byte
ACKed sent, not-

yet ACKed

last byte 
sent

cwnd

LastByteSent-
LastByteAcked

< cwnd

sender sequence number space 

 sender limits transmission:

 cwnd is dynamic, function 
of perceived network 
congestion



Transport Layer 2-97

congestion window
• In TCP, the congestion window is one of the factors that

determines the number of bytes that can be outstanding at any

time.

• The congestion window is maintained by the sender.

• The congestion window is a means of stopping a link between

the sender and the receiver from becoming overloaded with too

much traffic.

• It is calculated by estimating how much congestion there is on

the link.



Transport Layer 2-98

1. A lost segment implies congestion, and hence, the TCP
sender’s rate should be decreased when a segment is lost.

2. An acknowledged segment indicates that the network is
delivering the sender’s segments to the receiver, and
hence, the sender’s rate can be increased when an ACK
arrives for a previously unacknowledged segment.

3. Bandwidth probing

TCP congestion-control algorithm
The algorithm has three major components:

(1) slow start,
(2) congestion avoidance, and
(3) fast recovery.



Transport Layer 2-99

TCP Slow Start 

 when connection begins, 
increase rate 
exponentially until first 
loss event:
 initially cwnd = 1 MSS
 double cwnd every RTT
 done by incrementing 
cwnd for every ACK 
received

 summary: initial rate is 
slow but ramps up 
exponentially fast

Host A

R
T

T

Host B

time



Transport Layer 2-100

TCP: detecting, reacting to loss
1. if there is a loss event (i.e., congestion) indicated by a

timeout, the TCP sender sets the value of cwnd to 1 and
begins the slow start process anew.

-It also sets the value of a second state variable, ssthresh
(shorthand for “slow start threshold”) to cwnd/2

2. slow start may end is directly tied to the value of ssthresh.
-when the value of cwnd equals ssthresh, slow start ends and TCP
transitions into congestion avoidance mode.

3. slow start can end is if three duplicate ACKs are detected, in
which case TCP performs a fast retransmit and enters the fast
recovery state,



Fast Recovery

Transport Layer 2-101

TCP Vegas

 TCP Vegas was deployed as the default congestion

control method.

 that emphasizes packet delay, rather than packet

loss, as a signal to help determine the rate at which

to send packets.

 TCP Vegas uses additive increases in the

congestion window.



Transport Layer 2-102

 TCP Tahoe

 When a loss occurs, fast retransmit is sent

 half of the current CWND is saved as ssthresh

 slow start begins again from its initial CWND.

 Once the CWND reaches ssthresh,

 TCP changes to congestion avoidance algorithm where each

new ACK increases the CWND by MSS / CWND.

 This results in a linear increase of the CWND.



 TCP Reno

 A fast retransmit is sent,

 half of the current CWND is saved as ssthreshand

as new CWND,

 thus skipping slow start and going directly to the

congestion avoidance algorithm.

 The overall algorithm here is called fast recovery.
Transport Layer 2-103



Transport Layer 2-104

Q: when should the 
exponential 
increase switch to 
linear? 

A: when cwnd gets 
to 1/2 of its value 
before timeout.

Implementation:
 variable ssthresh
 on loss event, ssthresh is 

set to 1/2 of cwnd just 
before loss event

TCP: switching from slow start to CA



Transport Layer 3-105



Transport Layer 2-106

Summary: TCP Congestion Control

timeout
ssthresh = cwnd/2

cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment

L
cwnd > ssthresh

congestion
avoidance 

cwnd = cwnd + MSS    (MSS/cwnd)
dupACKcount = 0

transmit new segment(s), as allowed

new ACK.

dupACKcount++

duplicate ACK

fast
recovery 

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3 MSS

retransmit missing segment

dupACKcount == 3

timeout
ssthresh = cwnd/2
cwnd = 1 MSS
dupACKcount = 0
retransmit missing segment

ssthresh= cwnd/2
cwnd = ssthresh + 3 MSS
retransmit missing segment

dupACKcount == 3cwnd = ssthresh
dupACKcount = 0

New ACK

slow 
start

timeout
ssthresh = cwnd/2 

cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACKdupACKcount++

duplicate ACK

L
cwnd = 1 MSS

ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!



Transport Layer 3-107



Transport Layer 2-108

fairness goal: if K TCP sessions share same 
bottleneck link of bandwidth R, each should have 
average rate of R/K

TCP connection 1

bottleneck
router

capacity R

TCP Fairness

TCP connection 2



Transport Layer 2-109

Why is TCP fair?
two competing sessions:
 additive increase gives slope of 1, as throughout increases
 multiplicative decrease decreases throughput proportionally 

R

R

equal bandwidth share

Connection 1 throughput

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2



Transport Layer 2-110

Fairness (more)
Fairness and UDP
 multimedia apps often 

do not use TCP
 do not want rate 

throttled by congestion 
control

 instead use UDP:
 send audio/video at 

constant rate, tolerate 
packet loss

Fairness, parallel TCP 
connections

 application can open 
multiple parallel 
connections between two 
hosts

 web browsers do this 
 e.g., link of rate R with 9 

existing connections:
 new app asks for 1 TCP, gets rate 

R/10
 new app asks for 11 TCPs, gets R/2 



Transport Layer 2-111

Chapter 2: summary
 principles behind 

transport layer services:
multiplexing, 

demultiplexing
 reliable data transfer
 flow control
 congestion control

 instantiation, 
implementation in the 
Internet
 UDP
 TCP

next:
 leaving the 

network “edge”
(application, 
transport layers)

 into the network 
“core”


