Module 2: Transport Layer

our goals:

+ understand principles « learn about Internet
behind transport transport layer protocols:
layer services: = UDP: connectionless

= multiplexing, transport

demultiplexing = TCP: connection-oriented
= reliable data transfer reliable transport
= flow control * TCP congestion control

= congestion control

Transport Layer 2-1

Module 2 outline

2.1 transport-layer 2.5 connection-oriented
services transport: TCP

2.2 multiplexing and " segment structure
demultiplexing = reliable data transfer

2.3 connectionless " flow control
transport: UDP " connection management

2.4 principles of reliable 2.6 principles of congestion
data transfer control

2.7 TCP congestion control

Transport Layer 2-2

Transport services and protocols

<« provide logical communication
between app processes
running on different hosts

% transport protocols run in
end systems

" send side: breaks app
messages into segments,
passes to network layer

" rcv side: reassembles
segments into messages,
passes to app layer

< more than one transport
protocol available to apps

= |[nternet;: TCP and UDP

¢ Transport vs. network layer

} physical
<N i

application
transport
O%

L& K
./ N
= S

transport
networ

data link
physical

Transport Layer 2-3

Internet transport-layer protocols

application
“ DO

+ reliable, in-order
delivery (TCP)
" congestion control
* flow control
" connection setup

<+ unreliable, unordered
delivery: UDP

= no-frills extension of
“best-effort” IP

% services not available:
" delay guarantees
" bandwidth guarantees

NeWie |ecesiroe
data li
physic
, network
= netw data link
data linRe, hysical 2=
physical O
ork Yy
' k
(,,0%? p
d network €%
55> data link X
O
|__networkN®,
data link
e ySical
network
data link
hysical
Py network

data link
P physical

a

ation

networ
data link
physical

Transport Layer 2-4

Multiplexing/demultiplexing

- multiplexing at sender:
handle data trom multiple
sockets, add transport header
(later used for demultiplexing)

application

transport

application

B

rk

— demultiplexing at receiver: —
use header 1nfo to deliver

recerved segments to correct
socket

network

link

Pny$i¢

ral

physical

application |:| socket
Q process
trangport
network
l{mk D
physical
g8

Transport Layer 2-5

How demultiplexing works

+ host receives IP datagrams

» each datagram has source IP
address, destination IP
address

» cach datagram carries one
transport-layer segment

" cach segment has source,
destination port number
<+ host uses /P addresses &
port numbers to direct
segment to appropriate
socket

32 bits

source port # | dest port #

other header fields

application
data

(payload)

TCP/UDP segment format

Transport Layer 2-6

Connectionless demultiplexing

clientSocket = % recall: when creating

Soctet(SOCket-AF_ﬁET, datagram to send into UDP
socket. SOCK_DGRAM) socket, must specify

» destination IP address
= destination port #

< when host receives UDP [P datagrams with same
segment: dest. port #, but different
= checks destination port # source [P addresses and/or
in segment — source port numbers will
, be directed to same socket
= directs UDP segment to at dest

socket with that port #

Transport Layer 2-7

Connectionless demux: example

DatagramSocket
serverSocket = new
DatagramSocket DatagramSocket DatagramSocket
mySocket2 = new g mySocketl = new
DatagramSocket (6428) ; DatagramSocket
(9157) ; (5775) ;

application

application application

A A |
A tramsport .
trangport Netwohk trangport
nefwork link network
ink phisical link
[‘{ phydical phykikcal \
-
source port: 6428 source port: ?
’ dest port: 9157 : dest port: ?
> le 4
source port: 9157 source port: ?
dest port: 6428 dest port: ?

Transport Layer 2-8

Connection-oriented demux

+» TCP socket identified % server host may support
by 4-tuple: many simultaneous TCP
= source IP address sockets:
" source port number = cach socket identified by
= dest IP address its own 4-tuple
= dest port number « web servers have

+ demux: receiver uses different sockets for

all four values to direct each connecting client

segment to appropriate 1 non-pe.rsistent HTTP will
socket have different socket for

each request

Transport Layer 2-9

Connection-oriented demux: example

application
application application
Hapv My Nipy
m 4 Im “yangdport _‘Q Tk
tranlsport Hetwlork ranspor%
netivork = lidk network
link = hysical link v
,:" ‘f physical I server: P physical ! \
. address B e
host: IP source IP,port: B,80 + host: IP
address A dest IPport: A,9157 — source IPport: C,5775 address C
s dest IP,port: B,80
source IP,port: A,9157 -
dest IP, port: B,80 _

source IPport: C,9157
dest IP,port: B

80

Transport Layer 2-10

UDP: User Datagram Protocol [RFC 768]

+ “best effort” service, UDP
segments may be:

= |ost

= delivered out-of-order

to app
% connectionless:
" no handshaking

between UDP sender,
recelver

= cach UDP segment
handled independently
of others

<+ UDP use:

" streaming multimedia
apps (loss tolerant, rate
sensitive)

= DNS
= SNMP
+ reliable transfer over
UDP:

= add reliability at
application layer

= application-specific error
recovery!

Transport Layer 2-11

UDP: segment header

length, in bytes of
UDP segment,
including header

32 bits

source port #
length <~ | checksum

— why is there a UDP? __

% NO connhection

application establishment (which can
data add delay)
(payload)

<+ simple: no connection
state at sender, receiver

< small header size

% Nno congestion control:
UDP can blast away as
fast as desired

UDP segment format

Transport Layer 2-12

Applicafior-Loyer nedestying Tronsport
doviofion Protocl Fenbocal
Hectronic moil SATTP I
Remofe ferminal oocess Telnet i
We HTIP (44
Fle tronster i I
Remose fle samve NFS Tpiczlly LJOP
Sreaming mulfimedio wypicolly propristory 0P or TCP
Ifemet fekofony npicclly progeistory LFDP ar TCP
Nehwork monagement SHMP Typically O
haufing profocal Al Typicclly LJOP
Name fronslnfion NS ypically 0P

UDP checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted

segment

sender:

+ ftreat segment contents,
including header fields,
as sequence of 16-bit
integers

+ checksum: addition
(one’ s complement sum)
of segment contents

+ sender puts checksum
value into UDP
checksum field

receiver: all 3 16-bit
words are added,
including the checksum.

If no errors are
introduced into the
packet,

sum at the recerver will
bellll1111111111111.

If one of the bits1s a 0,
errors have been
introduced 1nto the
packet.

Transport Layer 2-14

Internet checksum: example

example: add two | 6-bit integers
11100110011 00110
1101010101 O01O01O01

wraparound@lOlllOlllOl11011

sum

1011101110111 100
checksum 0100010001 00O0OO011

Transport Layer 2-15

Principles of reliable data transfer
B B

Sending
Application ProCEss
layer
___________________________ .‘ s —— ——
rott_send() | BN deliver datas i [
¥
Reliable data Reliable data
Tn? nsz;:lrt transfer protocol transfer protocol
oy (sending side) (recaiving side)
3
ot rew() [E
Metwork I
layer e
Unreliable channel
I I l I
a. Provided service b. Service implemeantation
Key:

Ot EF‘-&I‘:kE‘t

Figure 3.8 # Reliable data transfer: Service model and service
implementation

Transport Layer 2-16

Principles of reliable data transfer

<+ important in application, transport, link layers

-

O

O O

O 8* ‘reoeiver I
8 == Drocess process

= 1
*C:) reliable c:hcmnel)j
30

C O

G =

(a) provided service

+ characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 2-17

Principles of reliable data transfer

<+ important in application, transport, link layers

-

O

O O

O 8* ‘reoeiver I
8 == Drocess process

= 1
*C:) reliable c:hcmnel)j
30

C O

G =

T—b()unrelioble c:hcmnel)iA

(a) provided service (b) service implementation

+ characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 2-18

Principles of reliable data transfer

<+ important in application, transport, link layers

-
O
O O
O 8* ‘reoeiver I
8 — OroCcess process
= 1
dt d)
= reliable c:hcmnel)j g} deliver data()
8_ D reliable data reliable data
@ > transfer protocol transfer protocol
% O (sending side) (receiving side)

udt_send()i Irdt_rcv()

T—b()unrelioble c:hcmnel)iA

(a) provided service (b) service implementation

+ characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 2-19

Reliable data transfer: getting started

rdt send() : called from above, deliver data () : called by
(e.g., by app.). Passed data to rdt to deliver data to upper
deliver to receiver upper layer /
rdt_send() data Tdeliver_data()

send [relicble data reliable data receijve
side [MaNsiEr proigce fransfer protocol i
(sending side) (receiving side) Slae
udt_send ()i packet packet Irdt rcv ()
T—b()unrelioble channel)J
udt send () : called by rdt, rdt rcv () : called when packet
to transfer packet over arrives on rcv-side of channel
unreliable channel to receiver

Transport Layer 2-20

Reliable data transfer: getting started

”
we ll:

+ incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

<« consider only unidirectional data transfer
" but control info will flow on both directions!

<+ use finite state machines (FSM) to specify sender,

receiver

event causing state transition
actions taken on state transition

—_—

state: when in this
“state” next state
uniquely determined
by next event

|

Transport Layer 2-21

Finite State Machines

% A finite state machine or finite automaton is
a model of behavior composed of states,
transitions and actions.

= A state stores information about the past, i.e. it reflects

the input changes from the system start to the present
moment.

= A transition indicates a state change and is described

by a condition/event that would need to be fulfilled to
enable the transition.

= An action is a description of an activity that is to be
performed at a given moment.

rdtl.0: reliable transfer over a reliable channel

<+ underlying channel perfectly reliable
" no bit errors
" no loss of packets
+ separate FSMs for sender, receiver:
= sender sends data into underlying channel
" receiver reads data from underlying channel

Wait for rdt_send(data)
call from

above

rdt_rcv(packet)

extract(packet,data)

packet = make_pkt(data) deliver_data(data)

udt_send(packet)

sender receiver

Transport Layer 2-23

rdt2.0: channel with bit errors(..

+ underlying channel may flip bits in packet
* checksum to detect bit errors
% the question: how to recover from errors:

" acknowledgements (ACKs): receiver explicitly tells
sender that pkt received OK

" negative acknowledgements (NAKs): receiver explicitly
tells sender that pkt had errors

= sender retransmits pkt on receipt of NAK

< new mechanisms in rdt2.0 (beyond rdt1.0):

» Error detection

= Receiver feedback: control messages (ACK,NAK) from
receiver to sender

m Retransmission

Transport Layer 2-24

rdt2.0: FSM specification

rdt_send(data)

sndpkt = make pkt(data, checksum)
udt send(sndpkt)

rdt_rcv(rcvpkt) &&
1IsSNAK((rcvpkt)

Wait for
call from
above

udt send(sndpkt)

rdt_rcv(rcvpkt) && 1sACK(rcvpkt)
A

sender

receiver

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

udt send(NAK)

Wait for
call from
below

rdt_rcv(rcvpkt) &&

notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver data(data)
udt send(ACK)

Transport Layer 2-25

rdt2.0: operation with no errors

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt

E——

rdt_rcv(rcvpkt) &&

Wait for iISNAK(rcvpkt)

call from
above

rdt_rcv(rcvpkt) &&
udt send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

. C

Wait for
call from
below

rdt_rcv(rcvpkt) && isACK(rcvpkt)
=
A

rdt rcv(rcvka &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)

deliver_data(data)
udt_send(ACK)

Transport Layer 2-26

rdt2.0: error scenario

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

dt send(NAK

call from
above

\)
rdt_rcv(rcvpkt) && isACK(rcvpkt) =
=

A call from

below

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)

deliver_data(data)
udt_send(ACK)

Transport Layer 2-27

rdt2.0 has a fatal flaw!

what happens 1f , handling duplicates:
ACK/NAK corrupted. + sender retransmits current

+ sender doesn’t know what pkt if ACK/NAK
happened at receiver! corrupted

+ can’t just retransmit: » sender adds sequence
possible duplicate number to each pkt

+ receiver discards (doesn’ t
deliver up) duplicate pkt

Transport Layer 2-28

rdt2.1: sender, handles garbled ACK/NAKSs

rdt send(data)
sndpkt = make pkt(0, data, checksum)

udt_send(sndpkt) rdt_rev(revpkt) && (corrupt(rcvpkt)
|| sSNAK(rcvpkt))

udt_send(sndpkt)

rdt_rcv(rcvpkt) rdt_rcv(rcvpkt)

&& notcorrupt(revpkt
&& is ACK(rI(D:V(kt)p) & & notcorrupt(rcvpkt)
D && 1sACK(rcvpkt)
A A
Wait for

rdt_rcv(rcvpkt) && Caa”bl\treom

(corrupt(rcvpkt) ||

isSNAK (rcvpkt)) rdt_send(data)

udt_send(sndpkt) sndpkt = make pkt(1, data, checksum)

udt send(sndpkt)

Transport Layer 2-29

rdt send(data)

sndpkt=make pkt(0,data,checksum)
udt send(sndpkt)

rdt_rcv({rcvpkt)&k
1“-‘__ (corrupt (rovpkt) | |

..,‘ iBHAEK (rowvpkt))
Wait for Wait for udt_send(sndpkt)
call 0 from ACK or
above NAK O

rdt_rcv{rcvpkt)
&& notcorrupt|{rcvpkt)
E& 1BACE(rcvpkt})

rdt_rcv({rcvpkt)
&&k notcorrupt{rcvpkt)
&k 18ACE (rovpkt)

A A
Wait for Wait for
ACK or call 1 from
NAK 1 above
rdt_rcv{rcvpkt)&s
(corrupt {rocvpkt) | |
isHAE(revpkt |
udt send(sndpkt | rdt_send{data|

sndpkt=make pkt(l,data,checksum)
udt send(sndpkt)

rdt2.1: receiver, handles garbled ACK/NAKs

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seqO(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

\
\
rdt_rcv(rcvpkt) && (corrupt(rcvpkt) \\ rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum) \

udt_send(sndpkt) Q

rdt_rcv(rcvpkt) && rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) && (not corrupt(rcvpkt) &&
has_seq1(rcvpkt)

has_seq0(rcvpkt) €

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data) Sender re-sends seq# 0
deliver_data(data) due to a garbled ACK/NAK

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Transport Layer 2-31

rdt_rev(rcvpkt)&é notcorrupt(revpkt)
k& has seql(rcvpkt)

extract (rcvpkt,data)
deliver data(data)
sndpkt=make pkt (ACK,checksum)

rdt_rcv(revpkt) " e rdt_rev(revpkt) &6 corrupt (revpkt)
&& corrupt(revpkt) \
HH sndpkt=make pkt (NAK,checksum)

sndpkt=make pkt (NAK, checksum) “ udt _send(sndpkt)
udt send(sndpkt)

Wait for Wait for

0 from 1 from
rdt_rcv(revpkt)&é notcorrupt below below
(rcvpkt)&khas seql (revpkt) rdt_rcv(rcvpkt)&é notcorrupt

(revpkt)&ihas seql(revpkt)

sndpkt=make pkt (ACK,checksum)

sndpkt=make pkt (ACK,checksum)
udt send(sndpkt)

udt send(sndpkt)

rdt rcv(rcvpkt) && notcorrupt(revpkt)
&k has_seql(rcvpkt)

extract (rcvpkt,data)

deliver data(data)
sndpkt=make pkt (ACK,checksum)
udt send(sndpkt)

rdt2.l: discussion

sender:
seq # added to pkt

= two seq. # s (0,1) will
suffice. Why?

must check if received
ACK/NAK corrupted

< twice as many states

= state must
“remember” whether
“expected” pkt should
have seq # of 0 or |

/
0‘0

/
0‘0

receiver:

/
0‘0

must check if received
packet is duplicate

= state indicates whether
0 or | is expected pkt
seq #
note: receiver can not
know if its last
ACK/NAK received
OK at sender

/
0‘0

Transport Layer 2-33

rdt2.2: a NAK-free protocol

+ same functionality as rdt2.1, using ACKs only

+ instead of NAK, receiver sends ACK for last pkt
received OK

" receiver must explicitly include seq # of pkt being ACKed

<+ duplicate ACK at sender results in same action as
NAK: retransmit current pkt

Transport Layer 2-34

rdt send({data)

sndpkt=make pkt(0,data,checksum)
udt send(sndpkt)

rdt rev{rcvpkt) &&
E“Hh (corrupt(rcvpkt)| |

& isACE({rcvpkt, 1))
Wait for : udt send(sndpkt)
call 0 from s
above
rdt rewv{rcvpkt) rdt_rcwv{rcvpkt)

&E notcorrupt|rcvpkt) EE notcorrupt{rcvpkt)
&E isACE(rcvpkt,1) && isACE(rcvpkt,0)
A A

: Wait for
“féfcf'lm call 1 from
above

rdt revi{rcvpkt) k&
(corrupt(rcvpkt) | |
isACK(rcvpkt ,0))

rdt_send(data)

udt send(sndpkt)

sndpkt=make pkt|l,data,checksum)
udt send{sndpkt)

jure 3.13 ¢ rdt2.2 sender

Transport Layer 2-35

rdt rcv(rcvpkt) && notcorrupt(rcvpkt)
k& has seql(rcvpkt)

extract(rcvpkt,data)

deliver data(data) rdt rcv(rcvpkt) ks
sndpkt=make pkt(ACK,0,checksum) (corrupt (revpkt) | |

udt send(sndpkt) has seq(rcvpkt))

M
H""x /-\ sndpkt=make pkt(ACK,0,chs

A udt send(sndpkt)
Wait for Wait for
rdt rcv(rcvpkt) && 0 from 1 from
(corrupt(rcvpkt) | | below below

has segl({rcvpkt))

sndpkt=make pkt(ACK,1,checksum)
udt send(sndpkt)

rdt rcv(rcvpkt) && notcorrupt(rcvpkt)
&k has seqgl(rcvpkt)

extract(rcvpkt,data)

deliver data(data)

sndpkt=make pkt(ACK,1,checksum)
udt send(sndpkt)

Figure 3.14 ¢ rdt2.2 receiver

rdt2.2: sender, receiver fragments

rdt_send(data)
sndpkt = make_pkt(0, data, checksum)

. udtwsndpkt)\ rdt_rcv(rcvpkt) &&
~ o Wait for (_corrupt(rcvpkt) |
..................... call 0 from ACK ISACK{revpkt.1))
.................................. above 0 udt_send(sndpkt)
.. sender FSM
___ fragment rdt_rcv(rcvpkt)
.................................... && notcorrupt(rcvpkt)
rdt_rov(rovpkt) && e 88 isACK(rcvpkt,0)
(corrupt(rovpkt) || —— T A
has_seq1(rcvpkt)) receiver FSM T
pp——— fragment
—___ T

&& has_seq1(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK1, chksum)

udt_send(sndpkt) Transport Layer 2-37

rdt3.0: channels with errors and loss

new assumption:

underlying channel can

also lose packets
(data, ACKs)

" checksum, seq. #,
ACKs, retransmissions
will be of help ... but
not enough

approach: sender waits

“reasonable” amount of
time for ACK

< retransmits if no ACK

received in this time

< if pkt (or ACK) just delayed

(not lost):

" retransmission will be
duplicate, but seq. # s
already handles this

" receiver must specify seq
of pkt being ACKed

% requires countdown timer

Transport Layer 2-38

rdt3.0 sender

rdt_send(data)

rdt_rcv(rcvpkt) &&

\ sndpkt = make_pkt(0, data, checksum)
\ udt_send(sndpkt)

(corrupt(rcvpkt) ||
iSACK(rcvpkt,1))

rdt_rcv(rcvpkt) \ start _timer A
—
A Wait for timeout
caallb(())f\tgm udt_send(sndpkt)
start_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

stop_timer

timeout
udt_send(sndpkt) C
start_timer (/

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
iISACK(rcvpkt,0))

A

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

stop_timer

Wait for
call 1 from

above
/

rdt_rcv(rcvpkt)
A

rdt_send(data)

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

Transport Layer 2-39

rdt3.0 in action

sender receiver
send pktO ktO
\\ rcv pkto
ack send ackO
rcv ack0
send pktl \K
rcv pktl
y send ackl
rcv ackl
send pkt0 \WO\‘
rcv pktO
ack send ackO

(a) no loss

sender receiver
send pktO ktO
\\ Fcv pkto
ack send ackO
rC\C/I acl:(k(l) 1
sen t
p \Kx
loss
timeoutd
resend pktl kt1
‘y send ackl
rcv ackl
send pkt0 \NO\‘
rcv pktO
ack send ack0

(b) packet loss

Transport Layer 2-40

rdt3.0 in action

sender receiver

send pkt0 ktO

j

rcv pktO
ack send ackO

rcv ackO

send pktl_ ki1

f

rcv pktl
ack send ackl

loss

\

timeout_

resend pktl kt1

rcv pktl
(detect duplicate)
send acE

f

ack1

\

rcv ackl
send pkt0 ktO
rcv pktO

ack send ack0

/

(c) ACK loss

sender receliver
send pkt0
\ Frcv pkto
send ackO
rcv ackO /
send pktl_ \\
rcv pktl

send ackl
ack1
timeout_
resend pktl rcv pktl
rcv ackl (detect du I|cate)

send pktO f 1kt0 send ac
rcv pktO

/ (detect duplicate)
send ackO
(d) premature timeout/ delayed ACK

Transport Layer 2-41

Performance of rdt3.0

% rdt3.0 is correct, but performance stinks
+» e.g.. | Gbps link, 15 ms prop. delay, 8000 bit packet:

L _ 8000 bits

Dyans = R = 109 pits feC 8 microsecs

= U : utilization — fraction of time sender busy sending

sender*
L/R .008

" if RTT=30 msec, | KB pkt every 30 msec: 33kB/sec
throughput over | Gbps link

% network protocol limits use of physical resources!

Transport Layer 2-42

rdt3.0: stop-and-wait operation

sender receiver

first packet bit transmitted, t = 0 - ---------ooo oo
last packet bit transmitted, t =L/ Rz

first packet bit arrives

RTT —last packet bit arrives, send ACK

ACK arrives, send next]
packet, t = RTT + L /R [~
i

L/R 008
u _ o8
sender™ R~ dooos ~ 0-00027

Transport Layer 2-43

Pipelined protocols

pipelining: sender allows multiple, “in-flight”, yet-
to-be-acknowledged pkts
" range of sequence numbers must be increased
" buffering at sender and/or receiver

data pqcke’r—» data packets—» ‘p

+— ACK packets

(a) a stop-and-wait protocol in operation (b) a pipelined protocol in operation

+ two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 2-44

Pipelinin

sender

first packet bit transmitted, t =0
last bit transmitted, t =L/ R 17~

RTT

ACK arrives, send next|
packet, t=RTT+L/R_

U

sender

: increased utilization

receiver

first packet bit arrives

last packet bit arrives, send ACK

> |ast bit of 2nd packet arrives, send ACK
last bit of 3 packet arrives, send ACK

3-packet pipelining increases
utilization by a factor of 3!

0024 '/

= 0.00081

~ 30,008

Transport Layer 2-45

Pipelined protocols: overview

Go-back-N:

% sender can have up to
N unacked packets in
pipeline

% receiver only sends
" cumulative ack

= doesn’ t ack packet if
there’ s a gap

< sender has timer for
oldest unacked packet

" when timer expires,
retransmit all unacked
packets

Selective Repeat:

+ sender can have up to N
unack’ ed packets in
pipeline

< receiver sends individual
ack for each packet

< sender maintains timer
for each unacked packet

" when timer expires,
retransmit only that
unacked packet

Transport Layer 2-46

Go-Back-N: sender’s view of seq. no in GBN

senoLbose nextseqnum dreqdy uscble, ot
| | ack'e0 yet sent

I""I """ ;ee?TQQETed not uscble

Transport Layer 2-47

GBN: sender extended FSM

rdt_send(data)

if (nextseqnum < base+N) {
sndpkt[nextsegnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextsegnum])
if (base == nextseqnum)

start_timer
nextseqnum++
A else
—_— e, refuse data(data
base=1 — ()

nextseqnum=1 ™

‘ ‘ : timeout
start_timer
3 udt_send(sndpkt[base])
C‘ Q udt_send(sndpkt[base+1])

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)

A

udt_send(sndpkt[nextseqnum-1])

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)
stop_timer
else

start timer
- Transport Layer 2-48

GBN: receiver extended FSM

default

udt_send(sndpkt) rdt_rcv(rcvpkt)
- C) && notcurrupt(rcvpkt)

A T~ - && hasseqnum(rcvpkt,expectedsegnum)
= -

expectedsegnum=1 A:-Dextract(rcvpkt,data)

sndpkt = deliver_data(data)

make_pkt(expectedseqnum,ACK,chksum) sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)

expectedsegnum++

ACK-only: always send ACK for correctly-received
pkt with highest in-order seq #

" may generate duplicate ACKs

" need only remember expectedseqnum
% out-of-order pkt:

= discard (don’ t buffer): no receiver buffering!

" re-ACK pkt with highest in-order seq #

Transport Layer 2-49

GBN in action

\

\X loss

sender window (N=4) sender
5678 send pkt0
5678 send pktl
EEE): 56738 send pkt2-
0 12 3 "X HA: send pkt3
(wait)
oflEZEE¥:678 rcv ack0, send pkt4
01EE¥¥ 78 rcv ackl, send pkt5
ignore duplicate ACK
Pkt 2 timeout
R12 345 W& send pkt2
iR12 3 4 5 Wk send pkt3
0 1EYE¥ 7 8 send pkt4
K12 34 5 ¥ send pkt5

=
\
=

recelver

receive pkt0, send ackO
receive pktl, send ackl

receive pkt3, discard,
(re)send ackl

receive pkt4, discard,

(re)send ackl
receive pkt5, discard,

(re)send ackl

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

Transport Layer 2-50

Selective repeat

% receiver individually acknowledges all correctly
received pkts

= buffers pkts, as needed, for eventual in-order delivery
to upper layer

% sender only resends pkts for which ACK not
received

* sender timer for each unACKed pkt

< sender window

= N consecutive seq # s
" limits seq #s of sent, unACKed pkts

Transport Layer 2-51

Selective repeat: sender, receiver windows

send_base hexfsegnum Sicady W
: ack’'ed yet sent
(000 TIEE 000y e
wEndow size —4
N

(a) sender view of sequence numlbers

out of order

acceptable
(buffered) but § (\yithin window)
already ack’ed

ﬂﬂﬂﬂﬂﬂﬂﬂﬂlllllllll||||||]|]|] |eectes ner [et

t _ indow size—4
N

rcv_base
(b) receiver view of sequence numbers

Transport Layer 2-52

Selective repeat

— receiver

— sender
data from above:

+ if next available seq # in
window, send pkt

timeout(n):

% resend pkt n, restart
timer

ACK(n) iNn [sendbase,sendbase+N]:
<+ mark pkt n as received

+ if n smallest unACKed
pkt, advance window base
to next unACKed seq #

Pl(t N IN [rcvbase, revbase+N-1]
+ send ACK(n)
+ out-of-order: buffer

+ in-order: deliver (also
deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

Pl(t N IN [rcvbase-N,revbase-1]
«» ACK(n)

otherwise:

< ignore

Transport Layer 2-53

Selective repeat in action

sender window (N=4) sender recelver
5678 send pkt0
EBE): 567 8 send pktl \ receive pkt0, send ack
EEE): 5678 send pkt2- : !
5678 send pkt3 T~Xoss receive pktl, send ackl
] wait
(wait) receive pkt3, buffer,
olEEb 678 rcv ack0, send pkt4 send ack3
0 1EEYE¥ 78 rcv ackl, send pkt5 receive pkt4, buffer,
send ack4
_record ack3 arrived receive pkt5, buffer,
Pkt 2 timeout send ack>
K12 345 FA&S send pkt2
VRI2 345 WA record ack4 arrived .
E12 34 5 ¥ & arr rcv pkt2; deliver pkt2,
12345 & record ack3 arrived / pkt3, pkt4, pkt5; send ack2

Q. what happens when ack2 does not arrive?|

Transport Layer 2-54

. sender window receiver window
Selective repeat: (Gferreceipy (ater receipt
dilemma EEE:012 DO

2 seq#,SI O, |, 2,3 0112}V I

o< W| N d oW S ize = 3 pktO —— Wwill accept packet

] with seq number 0
& receiver sees no (a) no problem

EEs0 12 ktl — ofEEo 12
LE330 12 —pki2 0112

example: 7 =, e
] 1 2 3[JKI

difference in two receiver can tsee sender side.
scenarios! receiver behavior identical in both cases!
. something’s (very) wrong!
+ duplicate data g s (very; wrong
accepted as new in 012 FRPI
(b) CEEJs012 —bktl — ofIEEl0 12
0 1 2 KJOEW. _%4 112 3 0 [
. . 01 22
Q: what relationship e
1 timeout
:ﬁéwe?q r:j Seqs# Zlif) retransmlt pkt0 X
Wi OW SIZ
avoid problem in (b)? o012 R — ""“eptp""d‘et
p { (b) oops! W/th seq number 0

R ° ° <= I °
A: window size <= '5(seq# size) Transport Layer 2-55

Chapter 2 outline

2.1 transport-layer
services

2.2 multiplexing and
demultiplexing

2.3 connectionless
transport: UDP

2.4 principles of reliable
data transfer

2.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

2.6 principles of congestion
control

2.7 TCP congestion control

Transport Layer 2-56

TC P: Ove rVieW RFCs: 793,1122,1323, 2018, 2581

% point-to-point:
® one sender, one receiver
<+ reliable, in-order byte
steam:

" no “message
. »
boundaries

<+ pipelined:
"= TCP congestion and

flow control set window
size

< full duplex data:

» bi-directional data flow
iIn same connection

= MSS: maximum segment
size
< connection-oriented:

" handshaking (exchange
of control msgs) inits
sender, receiver state
before data exchange

< flow controlled:

® sender will not
overwhelm receiver

Transport Layer 2-57

TCP sesment structure

URG: urgent data

(generally not used)™_| source port# | dest port #

ACK: ACK #
valid

32 bits

A

counting

by bytes

of data

(not segments!)

™\ sequence number

___acknowledgement number

PSH: push data now
(generally not used) ——

head| not—))
len wg _I_JBSF receive window

7

bytes

Urg data pointer revr willing

RST, SYN, FIN—T
connection estab

to accept

op/o{ s (variable length)

(setup, teardown
commands)

Internet /

checksum
(as in UDP)

/ application

data
(variable length)

Transport Layer 2-58

File
I

Data for 1st segment
I

Data for 2nd segment

gL

35

1,000

o

i

1,999

499,999

2

Figure 3.30 ¢ Dividing file data into TCP segments

7f

Transport Layer 2-59

TCP seq. numbers, ACKs

outgoing segment from sender

Sequence numbers:

"byte stream “number’ of
first byte in segment’ s
data

knowledgements

"seq # of next byte
expected from other side

= cumulative ACK

source port #

sequence number

acknowledgement number

dest port #

rwnd

checksum

urg pointer

sender sequence number space

window size

N

sent
ACKed

sent not- usable not
yet ACKed but not usable
(“in- yet sent

flight™)

incoming segment to sender

source port #

dest port #

A

sequence number

acknowledgement number

rwnd

checksum

urg pointer

Transport Layer 2-60

TCP seq. numbers, ACKs

Host A

3
3

User
types
‘C!

host ACKs
receipt

of echoed
lc7

\

Seq=42, ACK=79, diaR‘C"

Seq=79, ACK=43, data = ‘C’

\

Seq=43, ACK=K

simple telnet scenario

Host B

i

host ACKs
receipt of

‘C’, echoes
back ‘C’

Transport Layer 2-61

TCP reliable data transfer

[P does not

1. guarantee datagram delivery,

2. guarantee in-order delivery of datagrams,

3. guarantee the integrity of the data in the datagrams.

With IP service,

* datagrams can overflow router buffers and never reach their
destination,

* It can arrive out of order

* bits in the datagram can get corrupted

Transport Layer 2-62

TCP sender events:

Assumption:

* sender 1s not constrained by
* TCP flow control
* congestion control

* data from above 1s less than MSS 1n size
» data transfer is in one direction only

Transport Layer 2-63

TCP sender (simplified)

data received from application above

create segment, seq. #: NextSegNum
pass segment to IP (i.e., “send”)
NextSegNum = NextSegNum + length(data)
if (timer currently not running)
A start timer
NextSegNum = InitialSegNum
SendBase = InitialSegNum

timeout

retransmit not-yet-acked segment

with smallest seq. #
start timer
ACK received, with ACK field value y

if (y > SendBase) {
SendBase =y

[* SendBase—1: last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)
start timer

else stop timer

}

Transport Layer 2-64

NextSegNum=InitialSegNumber
SendBase=InltilalSegNumber

loop (forever) {
switch(event)

event: data recelved from application above
create TCP segment wlth sequence number NextSegNum
if (timer currently not running)
start ‘timer
pass segment to IP
NextSeglum=NextSegNum+length(data)
break:

event: timer timeout
retransmit not-yet-acknowledged segment with

smallest seguence number
start timer

break:;

event: ACK received, with ACK field value of ¥y
if (y = SendBase) {
SendBase=y
1f (there are currently any not-yet-acknowledged segments)
start timer

}

break:

} /* end of loop forever */

TCP: retransmission scenarios

Host A Host B Host A Host B
‘f \.\ \ / ‘/ \' .
— = = =

~— SendBase=92 ~—

Seq=92, 8 bytes of data Seq=92, 8 bytes of data

5 - S | Seq=100, 20 bytes of dat
2 ACK=100)
£ X =
ACK=1 o/
ACK=120
Seq=92, 8 bytes of data Seq=92, 8
SendBase=100 4
bytes of data\

SendBase=120
ACK=100

/ ACK=120

SendBase=120

\

lost ACK scenario premature timeout

Transport Layer 2-66

TCP: retransmission scenarios

Host A Host B
g sl

f— timeout —

-

/

Seq=92, 8 bytes of data

Seq=100, 20 bytes%fdz
ACK=100
XA/ /

ACK=120
\
Seq=120, 15 bytes of data

\

/

cumulative ACK

Transport Layer 2-67

TCP fast retransmit

% time-out period often

relatively long: - TCP fast retransmit ——
= |long delay before if sender receives 3
resending lost packet ACKs for same data
+ detect lost segments (“triple duplicate ACKs”),
via duplicate ACKs. resend unacked
= sender often sends segment with smallest
many segments back- seq #
to-back !
. . " |ikely that unacked
" if segment is lost, there segment lost, so don’ t
will likely be many wait for timeout
duplicate ACKs.

Transport Layer 2-68

TCP fast retransmit

Host A Host B

< E

RS

T [T Seq=92, 8 bytes of data

Seq= 1oow
\X

/ACK=1 00
~Seq=100, 20 bytes of data

A A

v

fast retransmit after sender

receipt of triple duplicate ACK
Transport Layer 2-69

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase=y
i1f (there are currently any not yet

acknowledged segments)
start timer

}
else { /* a duplicate ACK for already ACKed

segment */

increment number of duplicate ACKs
received for y

if (number of duplicate ACKS received
for y==3)
/* TCP fast retransmit */

resend segment with sequence number y

break;

TCP ACK generation

event at receiver TCP receiver action
arrival of in-order segment with delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,

expected seq # already ACKed send ACK

arrival of in-order segment with immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

arrival of out-of-order segment immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte

Gap detected

arrival of segment that immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

Transport Layer 2-71

Flow control

* TCP provides a flow-control

service to 1ts applications to

i eliminate the possibility of the

o ‘ sender overflowing the
receiver’s buffer.

 Flow control 1s thus a speed-

Cata Appliation
from IP TCP datn pATHELE

B - matching service—matching the
rate at which the sender 1is
sending against the rate at which

wre 3.38 + The recelve window {rwnd] and fhe recelve buffer the receiving application iS

(BocwBoffer) .
reading.

* TCP provides flow control by
having the sender maintain a
variable called the receive
window. Transport Layer 2-72

* the receive window is used to give the sender an idea of how much free buffer space
is available at the receiver. Because TCP is full-duplex, the sender at each side of the
connection maintains a distinct receive window.

* Host Ais sending a large file to Host B over a TCP connection. Host B allocates a
receive buffer to this connection; denote its size by RcvBuffer.

* From time to time, the application process in Host B reads from the buffer. Define
the following variables:
* LastByteRead: the number of the last byte in the data stream read from the
buffer by the application process in B
* LastByteRcvd: the number of the last byte in the data stream that has arrived
from the network and has been placed in the receive buffer at B

Because TOP is not permstied to overflow the allocated baffer, we mmst have
LastBytefovd — LastByteRead = RovBuffer
The receive window. denoted rwnd & set o the amount of spare room in the buffer

rwnd = RevBuffer — [LastByteRovd — LastByteRead | ort Layer 2-73

Connection Management

before exchanging data, sender/receiver “handshake”:

+ agree to establish connection (each knowing the other willing
to establish connection)

<« agree on connection parameters

ﬁ‘
application

o

connection state: ESTAB
connection Variables:
seq # client-to-server
server-to-client
rcvBuffer Size
at server,client

network Eﬂ

application

connection state: ESTAB
connection variables:
seq # client-to-server
server-to-client
rcvBuffer Size
at server,client

| V{ network

Socket clientSocket = Socket connectionSocket =
newSocket ("hostname" , "port welcomeSocket.accept() ;
number") ;

Transport Layer 2-74

Client host Server host

Connection
request
= —— Connection
. granted
ACK

Time Time

TCP 3-way handshake

3 Ei

client state

CLOSED

choose init seq num, x
send TCP SYN msg

SYNSENT

v received SYNACK(x)
indicates server is live;

ESTAB send ACK for SYNACK;
this segment may contain
client-to-server data

\

SYNbit=1, Seq=x

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

/\

ACKbit=1, ACKnum=y+1
\

choose init seq num, y
send TCP SYNACK
msg, acking SYN

received ACK(y)
indicates client is live

server state

LISTEN

SYN RCVD

ESTAB

Transport Layer 2-76

TCP 3-way handshake: FSM

Client application
initiates a TCP connection

CLOSED
Wait 30 seconds
Send SYN
TIME WAIT
= SYN SENT
F
Receive FIN, Receive SYN & ACK,
send ACK send ACK
v
FIN_WAIT 2 ESTABLISHED
Send FIN
Receive ACK,
send nothing FIN WAIT 1

Client application
initiates close connection

Transport Layer 2-77

TCP: closing a connection

+ client, server each close their side of connection
* send TCP segment with FIN bit = |

+ respond to received FIN with ACK

= on receiving FIN, ACK can be combined with own FIN
<+ simultaneous FIN exchanges can be handled

Transport Layer 2-78

TCP: closing a connection

client state 1./ 5
ESTAB - \

clientSocket.close ()

FIN.WAIT_1 can no longer \
send but can M
receive data / CLOSE_WAIT
v till
FIN_WAIT 2 wait for server can st

server state

ESTAB

send data
close
TIIV‘I'ED WAIT — — can no longer
- \ send data
timed wait \ v
for 2¥max CLOSED
segment lifetime

CLOSED _\,

Transport Layer 2-79

Server application
creates a listen socket

Receive ACK, CLOSED
send nothing
LAST ACK A
4
Hecelve 5YN
Send AN send SYN & ACK
¥
CLOGE W T SYN_RCVD
Receive FIN, Receive ACK,
send ACK send nothing
ESTABLISHED

Transport Layer 2-80

Principles of congestion control

congestion:

» informally: “too many sources sending too much
data too fast for network to handle

< different from flow control!

<+ manifestations:
" lost packets (buffer overflow at routers)
* long delays (queueing in router buffers)

Transport Layer 2-81

C

original data: 7*in

two senders, two

auses/costs of congestion: scenario |

throughput:

Ao

}‘out

receivers Host A

A

A

one router, infinite

unlimited shared

output link buffers

buffers %;Z .

output link capacity: R

R/24 - mmmeee

7“out

A R/2

< maximum per-connection
throughput: R/2

in

no retransmission e

| E——

delay

Ain R/2
+ large delays as arrival rate,
approaches capacity

Transport

}\‘in’

Layer 2-82

Causes/costs of congestion: scenario 2

% one router, finite buffers

+ sender retransmission of timed-out packet

A

= application-layer input = application-layer output: A, =
out

= transport-layer input includes retransmissions : A;, > A
18] 18]

A, : original data

A'..: original data, plus

retransmitted data

Host|A

> .

Se==—== “EEEERER

pd—2

out

finite shared output
link buffers

Transport Layer 2-83

Causes/costs of congestion: scenario 2

idealization: perfect
knowledge

« sender sends only when
router buffers available

—il

Copy

[
free buffer space!
_‘m
LI1T]1]]
g ~
Host B finite shared output

link buffers

A, : original data

R/2-

Kout

A'..: original data, plus
retransmitted data

out

Transport Layer 2-84

Causes/costs of congestion: scenario 2

Idealization: known loss
packets can be lost,
dropped at router due
to full buffers

<+ sender only resends if
packet known to be lost

A : original data

A'..: original data, plus
retransmitted data

no buffer space!

Transport Layer 3-85

Causes/costs of congestion: scenario 2

Idealization: known loss R/
packets can be lost,
dropped at router due
to full buffers

<+ sender only resends if :
packet known to be lost . RI?

Kout

A : original data

A'..: original data, plus
retransmitted data

free buffer space!

Transport Layer 3-86

Causes/costs of congestion: scenario 2

Realistic: duplicates

+ packets can be lost, dropped
at router due to full buffers

<+ sender times out prematurely,
sending two copies, both of
which are delivered

free buffer space!

Transport Layer 3-87

Causes/costs of congestion: scenario 2

“costs” of congestion:

+ more work (retransmit)

+ unneeded retransmissions: link carries multiple copies of pkt
" decreasing good throughput

SRS S AT i 708 MR 1 RiZ-

3l A 1

t

e ——— e ———— e — —

=
P
==
3
=
Fa

Causes/costs of congestion: scenario 3

< four senders
< multihop paths
< timeout/retransmit

Host A

A, : original data

A'.: original data, plus
retransmitted data

finite shared output
link buffers

Host D

out

Host B

Transport Layer 2-89

Causes/costs of congestion: scenario 3

7‘“out
.

13 77 .
another "cost of congestion:

» when packet dropped, any “upstream
transmission capacity used for that packet was
wasted!

Transport Layer 2-90

AEEroaches towards congestion control

two broad approaches towards congestion control:

~_end-end congestion _network-assisted

control: congestion control:

+ no explicit feedback <+ routers/switches provide
from network feedback to end systems

« congestion inferred " single bit indicating
from end-system congestion (SNA,
observed loss, delay DECDbit, TCP/IP ECN,

« approach taken by ATM)
TCP = Explicit feedback

Transport Layer 2-91

Hetlﬂmrk feedback via recelver

‘-\Dlrect network

+, feedback
\
\

1

\

= el e
=

information

=3 S PN = T e L e e e Y u

Host B

Figure 3.49 + Two feedback pathways for network-indicated congestion

e — = ——y —-

Case study: ATM ABR congestion control

ABR: available bit rate:

in ATM

RM (resource management)

cells:

+ sent by sender, interspersed

with data cells (RM cell)

+ bits in RM cell set by

switches (“network-assisted ™

= N/ bit: no increase in rate
(mild congestion)

= (1 bit: congestion
indication

« RM cells returned to sender

by receiver,

Transport Layer 2-93

Case study: ATM ABR congestion control

I RM cell H data cell

S)
Y/
L=

+ two-byte ER (explicit rate) field in RM cell

= congested switch may lower ER value in cell

= Set to min supportable rate of all switches on source to destination
path

« EFCI (Explicit Forward CI) bit in data cells: set to | 1n
congested switch

= if data cell preceding RM cell has EFCI set, receiver sets CI bit in
returned RM cell

Transport Layer 2-94

TCP congestion control: additive increase
multiplicative decrease
% approach: sender increases transmission rate (window

size), probing for usable bandwidth, until loss occurs

" additive increase: increase cwnd by 1 MSS every
RTT until loss detected

" multiplicative decrease: cut cwnd 1n half after loss

additively increase window size ...
... until loss occurs (then cut window in half)

J

AIMD saw tooth
behavior: probing
for bandwidth

cwnd: TCP sender
congestion window size
L

time
Transport Layer 2-95

TCP Congestion Control: details

sender sequence number space

— cwnd ——s! TCP sending rate:
(11T * poughly send cun
bytes, wait RTT for
ast bgtej sent\nOt_L jast byte ACKS, then send
* JetACked M more bytes

< sender limits transmission:

LastByteSent- < cwnd
LastByteAcked

+» cwnd is dynamic, function
of perceived network
congestion

Transport Layer 2-96

congestion window

* In TCP, the congestion window is one of the factors that
determines the number of bytes that can be outstanding at any
time.

* The congestion window 1s maintained by the sender.

* The congestion window i1s a means of stopping a link between
the sender and the receiver from becoming overloaded with too
much traffic.

* It 1s calculated by estimating how much congestion there 1s on

the link.

Transport Layer 2-97

1. A lost segment implies congestion, and hence, the TCP
sender’s rate should be decreased when a segment 1s lost.

2. An acknowledged segment indicates that the network 1s
delivering the sender’s segments to the receiver, and
hence, the sender’s rate can be increased when an ACK
arrives for a previously unacknowledged segment.

3. Bandwidth probing

TCP congestion-control algorithm

The algorithm has three major components:
(1) slow start,
(2) congestion avoidance, and
(3) fast recovery.

Transport Layer 2-98

TCP Slow Start

+ When connection begins,

Increase rate
exponentially until first

loss event:
= initially ewnd = 1 MSS
" double cwnd every RTT

* done by incrementing
cwnd for every ACK
recetved

< summary: initial rate 1s
slow but ramps up
exponentially fast

Host A Host B

,\ V{
W

%

ur segments

«—RTT—

time

Transport Layer 2-99

TCP: detecting, reacting to loss

1. if there 1s a loss event (i.e., congestion) indicated by a
timeout, the TCP sender sets the value of cwnd to 1 and

begins the slow start process anew.

-It also sets the value of a second state variable, ssthresh
(shorthand for “slow start threshold™) to cwnd/2

2. slow start may end 1s directly tied to the value of ssthresh.

-when the value of cwnd equals ssthresh, slow start ends and TCP
transitions into congestion avoidance mode.

3. slow start can end is 1f three duplicate ACKs are detected, in
which case TCP performs a fast retransmit and enters the fast

recovery state,

Transport Layer 2-100

Fast Recovery
+» TCP Vegas

+» TCP Vegas was deployed as the default congestion

control method.

+ that emphasizes packet delay, rather than packet
loss, as a signal to help determine the rate at which

to send packets.

« TCP Vegas wuses additive increases 1n the

congestion window.

Transport Layer 2-101

+ TCP Tahoe

<+ When a loss occurs, fast retransmit 1s sent

half of the current CWND 1s saved as ssthresh

J
0’0

slow start begins again from its initial CWND.

J
0’0

J
0’0

Once the CWND reaches ssthresh,

TCP changes to congestion avoidance algorithm where each

new ACK increases the CWND by MSS/ CWND.

J
0’0

This results in a linear increase of the CWND.

J
0’0

Transport Layer 2-102

+ TCP Reno

+ A fast retransmit 1s sent,

< half of the current CWND 1s saved as ssthreshand
as new CWND,

+ thus skipping slow start and going directly to the

congestion avoidance algorithm.

+ The overall algorithm here 1s called fast recovery.

Transport Layer 2-103

TCP: switching from slow start to CA

QQ: when should the
exponential
Increase switch to b
linear?

A: when cwnd gets
to 1/2 of its value
before timeout.

TCP Reno

—
(N
l

ssthresh

(in segments)

ssthresh

Congestion window

TCP Tahoe

o N OB O 0 O
l l l l l

Implementatlon 5 6 7 8 9 1IO 1|‘[1|2 1|3 ‘[|4 1|5
R Variable SSthreSh Transmission round

» on loss event, ssthresh is
set to 1/2 of cwnd just
before loss event

o
N
w
faS

Transport Layer 2-104

new ACK new ACK

duplicate ACK cwnd=cwnd+M85 cwnd=cwnd+M355 » (M55 /cwnd)
dupACEcount++ dupACKcount=0 dupACKcount=0
N fransmit new segment(s) as allowead transmit new segmeantis) as allowed
cwvnd=1 MS5E
ssthregh =64 EB cwnd 2 ssthresh
dupACEcount=0 ~_ A
- Slow Congestion
start avoidance
timeout timecut
duplicate ACE
sethresh=cwnd /2 ssthresh=cwnd,/2
cund=1 MES & cwnd=1 MES * dupACEcount ++
dupACEcount=(0 dupACKcount=0
retransmit missing segment retransmit missing segment
timeoot
ACK
ssthresh=cwnd/2 i
cwnd=1 cwnd=ssthresh

dupACKocount=0 dupsCEocount=0

dupACKcount== retransmit missing segment dupACEcount==3
sesthresh=cwnd /2 szthresh=cwnd/ 2
cwnd=ssthresh+3i:M=58 cwnd=ssthresh+3:M55

retransmit missing segment retransmit missing segmant

Fast
recovery

duplicate ACE

cwnd=cwnd+M35
transmit new segment{s), as allowed

S

U

—

mmary: T CP Congestion Control

new ACF B

duplicate ACK o cwnd = cwnd + MSS - (MSS/and)
dupACKcount++ hew ACK dupACKcount = 0
cwnd = cwnd+MSS transmit new segment(s), as allowed

dupACKcount =0

m />transmit new segment(s), as allowed
cwnd > ssthresh

A

cwnd =1 MSS
ssthresh = 64 KB

_dupACKcount=0__ A ‘
b (9:2) timeout
"\ &))'ssthresh = cwnd/2
2o </ cwnd = 1 MSS duplicate ACK
&9 timeout dupACKcount =0 dupACKcount++
>4 ' ssthresh = cwnd/2 A retransmit missing segment A
cwnd = 1 MSS
dupACKcount=0 =
retransmit missing segment (€ ‘C)
timeout)
ssthresh = cwnd/2 2 o
cwnd = 1 MSS New ACK
dupACKcount=0 “nd = ssthresh
dupACKcount == retransmit missing segment dﬁgRC}chosun{e:so dupACKcount ==
ssthresh= cwnd/2 ssthresh= cwnd/2
cwnd = ssthresh + 3 MSS cwnd = ssthresh + 3 MSS
retransmit missing segment retransmit missing segment

duplicate ACK
€) wnd=cwnd+Mss
transmit new segment(s), as allowed

Transport Layer 2-106

Congestion Window graph for Reno

Congestion Nindow graph for Reno OAOEEL T WO L 268

{FicaliBg 320000 162088

Tt 30,0000
J \ 28,0000 /JJ
\ 26,0000 7

\
\ 24,0000 IF
\ 22,0000 f’r

\ 20,0000

18,0000

\ 15,0000

\ ; 14,0000

\ : 12,0000

\ 10,0000

\ ; 5,000 ”

B..0000

4,0000
[3,000 \ 4,0000
\ I

{20000 2 0000

L
1,000 B

0,0000 Timelzec) (it Timelset

1), 00 1, 0000 2,0000 3,000 4., 0000 b D0 {3, i 1, (0do 2,00 3,00 4,000 b, 0
B B B B F B E B S e m e s = = = .

TCP Fairness

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

3

SLOC),
e/ ﬂottleneck
Q router

= .
TCP conne(;ti\b/n 2 capacity R

Transport Layer 2-108

Why is TCP fair!?

two competing sessions:
+ additive increase gives slope of |, as throughout increases
+ multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 2 throughput o

Connection 1 throughput R

Transport Layer 2-109

Fairness gmorez

Fairness and UDP

% multimedia apps often
do not use TCP

= do not want rate
throttled by congestion
control

< instead use UDP;

= send audio/video at
constant rate, tolerate
packet loss

Fairness, parallel TCP
connections

< application can open
multiple parallel
connections between two
hosts

< web browsers do this

% e.g., link of rate R with 9
existing connections:

" new app asks for | TCP, gets rate
R/10

" new app asks for || TCPs, gets R/2

Transport Layer 2-110

Chapter 2: summary

< principles behind
transport layer services:
" multiplexing,
demultiplexing
" reliable data transfer
" flow control
" congestion control

< Instantiation,
implementation in the
Internet
= UDP
= TCP

next:

< leaving the
network “edge”
(application,
transport layers)

<+ into the network
“Core”

Transport Layer 2-111

