

OVERVIEW

= This chapter presents modern processor technology and the supporting memory
hierarchy.

= We begin with a study of instruction-set architectures including CISC and RISC, and
we consider typical superscalar, VLIW, superpipelined, and vector processors.

= The third section covers memory hierarchy and capacity planning and final section
introduces virtual memory, address translation and page replacement methods.

®

4.1 ADVANCED
TECHNOLOGY

Architectural families of modern computers are
= CISC

= RISC

= Superscalar

= VLIW

= Super pipelined

PROCESSOR

= Vector processors
= Symbolic processors
Scalar and vector processors are numerical computation.

Symbolic processors have been developed for Al applications.

4.1.1 DESIGN SPACE OF PROCESSORS

= Various processor families can be mapped onto a coordinated space of
clock rate versus cycles per instruction(CPI).

= Clock speed is the amount of cycles the CPU can handle in one second and CPI

means the amount of cycles it takes for the CPU to complete the instruction.

= As implementation technology evolves rapidly, the clock rates of various
processors are gradually moving from low to higher speeds toward the

right of the design space.

= Manufacturers are trying to lower the CPI rate using hardware and software

approaches.

®

Multi-core, embedded,
low cost, low power High performance

"] — E—

CPI

Clock speed (GHz)
Fig.4.1 CPl versus processor clock speed of major categories of processors

CISC processors:

Intel 1486,M68040,VAX/8600,IBM 390.
Clock rate: 33 to 50 MHz.

CPI:varies from 1 to 20 cycles.

Microprogrammed control.

RISC processors:

Intel 1860,SPARC,MIPS R3000,IBM RS/6000.

Clock rate: 20 to 120 MHz.
CPI:1 to 2 cycles.

Hardwired control.

*Hardwired

Mo mory —.-I

Instruction code]

Sequence Counter

Combinational
Logic Circuits

* Microprogrammed

Mamory —4 Instruction code

Control
signals

CAR: Control Address Register
CDR: Control Data Register

Hext Address
Ganer

(sequencer)

ator [

CAR

Contral
Memory

cpR L] Decoding | -

Circuit

e

Control

' signals

[

Super scalar processors:

Intel i960CA,IBM RS/6000,DEC 21064.

Multiple instructions are issued simultaneously during each cycle.
Clock rate: 20 to 120 MHz.

CPI: .2 to .5 cycles.

= Subclass of RISC processors

Instruction Instruction
; dispatch issue
Instruction fetch
and branch [Instruction Instruction

Static prediction execution reorder and
< commit

program

] | |
=
o

Window of
execution

Very long instruction word(VLIW):

Uses more functional units than superscalar processor.
Clock rate: 5 to 50 MHz.

CPI: .1 to .2 cycles.

Uses very long instructions (256 to 1024 bits per instruction.)

Implemented with micro programmed control.

instruction packet

instruction 1 instruction 2 TI instruction 3 instruction 4

. : I
L L L

integer integer | memory
unit unit unit
| |

floating point
unit

Super pipelined processors:

Uses multiphase clocks with a much increased clock rate.
Clock rate: 100 to 500 MHz.

CPI: 1 to 5 cycles.

Vector supercomputers:

Uses multiple functional units for concurrent scalar and vector
operations.

Processors are super pipelined. _
Very high clock rate:100 to 1000 MHz. TEX MEM WwB |

D - EX MEM WwWB .]
Very low CPI:.1 to .2 cycles. D EX MEM ws

IF D EX MEM WEB

wa
| EX | =M

EX MEM WE

- Pipelining

Superpipelining

Clock cycles

L)

WHAT IS PIPELINING?
e
Washertakes 30minutes ‘Folder” takes 30minutes
4am 6 8 10 12am
-

30l_| 30'30|_0|_(30[30!_0|_|30|30 30 30

Dryer takes 30minutes ‘Stasher’ takes 30minutes g <
\ Tfme
/ b
12am

-
4am 6 8 10 s BB ﬁ

e 09 A
30'_|30'30’_o|_|30|30_'_0'_|30|30'_0|_|3030 §§ l 4 5
sgga 0 Fg Yggh

5 P e

[=]

INSTRUCTION PIPELINES

The execution cycle of a typical instruction includes four phases.

= Fetch

= Decode

» Execute LIFE CYCLE(IT'S JUST ONE CYCLE)

" Write-back Each part has an Opcode.
;ﬁ;:{ﬂmﬂm : - Tells the core what should be done
From where program counter is ‘with the information that follows it.
pointing. Z

@

Places the r&;ult of what's ——
been worked on back into Real operations are done to get the
the memory. desired results @

Pipelining is an implementation technique where multiple instructions are overlapped in
execution. The computer pipeline is divided in stages. Each stage completes a part of an
instruction in parallel. The stages are connected one to the next to form a pipe - instructions
enter at one end, progress through the stages, and exit at the other end.

Fetch Decode Execute Wrishack
s \ .r’ll //
1 [| | I
| |
rsbn i = . e
1 1
3 — |]
-
Clock cyclas

Pipelining does not decrease the time for individual instruction execution.
Instead, it increases instruction throughput.

Pipeline cycle: It is defined as the time required for each phase to complete its
operation assuming equal delay in all phases.

Instruction pipeline cycle: the clock period of the instruction pipeline.

Instruction issue latency: the time (in cycles) required between the issuing of two
adjacent instructions.

Instruction issue rate: the number of instructions issued per cycle.
Simple operation latency: simple operations are integer adds, loads, stores, etc.
Complex operations are divides, cache misses.

Resource Conflicts: two or more instructions demand use of the same functional unit
at the same time.

®

T CL—T—1 1
Ifatah Decoda Execuds Writs back

Successive .
Instructions :

] o

]

il

| 1] | | | | | | | | | >

O 1 2 3 4 5 & 7 & 9 10 11 12 13 Timein Base Cycles

(a) Execution in a base scalar processor

I 0t |
— T
| TR
[I
I |
l '| I
Successive [T T T 1]
InsStructions’ jexs Decode Exscute Wiiie back A
Time in Base Cycles
| | | | | | | |] | | | |] l Lo
>

o 1 2 38 4 5 & 7 8 9 10 M 12 13 14 15 18

(b) Underpipelined with two cycles per instruction issue

et

1
==]

Successive L T
Instructinns Haleh & Docode Executs & Wrile bk 'ﬂme in Base C)"C]SS

| I | | I | | I |] | | I I | LS
o 1 2 3 4 5 6 7 8 8 10 11 12 13 14 15 186

(c) Underpipelined with twice the base cycle

Figure 4.2 Pipelined execution of successive instructions in a base scalar processor
and in two underpipelined cases. Courtesy of Jouppi and Wall; reprinted from
Proc. ASPLOS, ACM Press, 1989)

= A base scalar processor:
= issues one instruction per cycle

= has a one-cycle latency for a simple operation
= has a one-cycle latency between instruction issues
= can be fully utilized if instructions can enter the pipeline at a rate on one per cycle

= For a variety of reasons, instructions might not be able to be pipelines as
agressively as in a base scalar processor. In these cases, we say the
pipeline is underpipelined.

= CPI rating is 1 for an ideal pipeline. Underpipelined systems will have
higher CPI ratings, lower clock rates, or both.

®

= The control unit generates control

signals required for the fetch, decode,
ALU operation, memory access, and
write result phases of instruction
execution

Fig.4.3

External bus s 4
Address PG
— et]
e Je—weal]
! Dala [=3
AL
Intemal iz
bus B
Control . PEW Intamal
Unit Contiol bus A
signals
L
Registers

Data path architecture and control unit of a scalar processor

4.1.2 INSTRUCTION-SET
ARCHITECTURES

= The instruction set of a computer specifies the primitive commands or machine
instructions that a programmer can use in programming the machine.

= The complexity of an instruction set is attributed to the instruction formats,
addressing modes, general purpose registers, opcode specification and flow
control mechanisms used.

= Two classes
= RISC
= CISC

COMPLEX INSTRUCTION SETS

= Simple instruction set — high cost of hardware

= more and more functions were built into the hardware, making the instruction set large
and complex.

= A typical CISC instruction set contains approximately 120 to 350 instructions using
variable instruction/data formats,

= uses a small set of 8 to 24 general-purpose registers (GPRs),

= and executes a large number of memory reference operations based on more than
a dozen addressing modes.

REDUCED INSTRUCTION SETS

= only 25% of the instructions of a complex instruction set are frequently used about
95% of the time. This implies that about 75% of hardware supported instructions
often are not used at all.

= Pushing rarely used instructions into software would vacate chip areas for building more
powerful RISC

A RISC instruction set typically contains less than 100 instructions with a fixed instruction format
(32 bits). Only three to five simple addressing modes are used. Most instructions are register-based. Memory
access 1s done by load/store instructions only . A large register file (at least 32) is used to improve fast context
switching among multiple users, and most instructions execute in one cycle with hardwired control.

ARCHITECTURAL DISTINCTIONS

= CISC
= Unified cache for instructions and data (in most cases)

= Microprogrammed control units and ROM in earlier processors (hard-wired controls units
now in some CISC systems)

= RISC
= Separate instruction and data caches
= Hard-wired control units

Contro! Instruction and Hardwired
Unit [*™] DataPath Control Unit [« Data Path
Microprogrammed Instruction -
Control Memory Cache Cache Data Cache
{nstruction) (Data)
Main Memory Main Memory

(a) The CISC architecture with micropro- (b) The RISC architecture with

grammed control and unified cache hardwired control and split instruc-
| tion cache and data cache. |

®

Table 4.1 Characteristics of Typical TSC and RISC Architectures

Architectural
{ haracte ristic

Complex Instriction Set
Computer (CISC)

Reduced Instruction Set
Computer (RISC)

Instruction-set size and
mstruction formats

Large set of mstruchons with
variahle formats (1604 bits
per mstruchon).

Small set of instructions with
fixed (32=hit) format and most
register-based instructions,

Addressing modes

12-24.

Limuted to 3-5.

Genera l-purpose reg@sters

and cache design

824 GPRs, originally with a
unified cache for instructions
and data, recent designs also
use split caches,

Large numbers (32-192) of
GPRs with mostly split data

cache and mstruction cache.

CPI

CPl between 2 and 15,

Omne cycle tor almost all mstructions
and an average CPl < 1.5,

CPU Control

Earlier microcoded usmg control
memory (ROM), but modern
CISC also uses hardwired control.

Hardwired without control memory;

CISC SCALAR PROCESSORS

= A scalar processor executes with scalar data.
= Early systems had only integer fixed point facilities.

= Modern machines have both fixed and floating point facilities, sometimes as
parallel functional units.

= Many CISC scalar machines are underpipelined.
= Underpipelined systems will have higher CPI ratings, lower clock rates, or both.

= Representative systems:
= VAX 8600
= Motorola MC68040

= Intel Pentium

VAX 8600

+ VAX : Virtual Address Extension (32-bit extension of the older 16-bit early versions)

+ Manufacturer: Digital Equipment Corporation (DEC).

+ First Model: VAX-11/780

+ VAX 15 a family of popular and influential computers implementing VAX Instruction Set

Architecture.

+ The VAX 8600. ("Fenus”.Oct 1984). had increased performance(4.2 times VAX-11/785),

I/O capacity, and included macro-pipelining and ECL (emitter coupled logic).
t2 Cycle Time of VAX 8600 CPU: 80 ns(12.5 MHz)

FEATURES OF VAX 8600 PROCESSOR < o=

* Console Bus
T - . . 4 Executi Virtual Add
Implements CISC architecture with micro programmed control, "Unn‘°"u uancess
Integer AL "L v
. . : . . chel Mema o)
300 instructions with 20 different addressing modes. " lemf (16K el 24V0 Le o Sy-
= (16 GPRs) Bytes)) systems

= . ; i z : . . " Y

Two functional units for concurrent execution of mstruction of integer and floating pomnt Fload pe,a,,dﬁ tMemory Bus
Unit Bus Control Main Memory

instructions Memory (Typical 8 MBytes)

. Write Bus ,

Captions:

l ﬁGPRS CPU = Central Processor Unit

TLB = Translation Lookaside Buffer

Pipeline is built with six stages. PR = General Pupose Regiser

: . s . . Figure 4.5 The VAX 8600 CPU, a typical CISC processor architecture. (Courtesy
The instruction unit prefetches and decodes and handles branching operations. of Digital Equipment Corporation, 1985)
A transistor look aside buffer (TLB) 1s used in memory for fast generation of the physical

address from the virtual address

CISC Microprocessor Families In 1971, the Intel 4004 appeared as the first microprocessor based on a
4-bit ALU. Since then, Intel has produced the 8-bit 8008, 8080, and 8085. Intel’s 16-bit processors appeared
in 1978 as the 8086, BO8E, 80186, and 80286. In 1985, the 80386 appeared as a Elhi'!l-machine_ The 80486
and Pentium are the latest 32-bit processors in the Intel 80x86 famly.

Motorola produced its first 8-hit microprocessor, the MC6800, in 1974, then moved to the 16-bit 68000
in 1979, and then to the 32-bit 68020 in 1984. Then came the MC68030 and MC68040 in the Motorola
MC680x0 family. National Semiconductor’s 32-bit microprocessor N832532 was introduced in 1988, These
C1SC microprocessor families have been widely used in the personal computer (PC) industry, with Intel x86
tamily dominating.

EX2: Motorola MC68040

Instruction Bus

Instruction Instruction
ATC ™

Cache
/ i Tnsfruction
'"%2{2}?“ MMU/Cache/Snoop jat—m
Convert Controller 1A
Decode Instruction Memory Unit
EA
Execute Calculate
- EA
Fetch
Writeback| >
Execute Data Memory Unit
i — Daia
Floating- Writeback MMUi/Cache/Snoop
point Controller
Unit Integer ¢ *
Unit - L oA
ata ata o
ATC ™ cache >
- Captions: Data Bus

IA = Instruction Address

DA = Data Address

EA = Effective Address

ATC = Address Translation Cache
MMU = Memory Management Unit

Figure 4.6 Architecture of the MC68040 processor. (Courtesy of Motorola Inc., 1991)

Bus Controllers

lt—>-

Address
Bus

(32 bits)

jt—
Instruction/

Data Bus
(32 bits)

e—3
Bus
Control
Signals

FEATURES :

The MC68040 15 a 0.8 pm HCMOS microprocessor containing more than 1.2 million
transistor.

It's implemented over 100 instructions using 16 general-purpose register.

4kb of data cache and 4kb of mstruction cache with separate memory management
unit (MMU's) supported by a address translation cache.

Support 18 addressing modes, integer unit is organized in six stages of instruction
pipeline. floating point consist of 3 stages.

Separate instruction and data buses are provided both addressing and data buses are of
32bits width.

The complete memory unit 1s provided with a virtual demand paged operating system.

RISC SCALAR PROCESSORS

= Designed to issue one instruction per cycle

= RISC and CISC scalar processors should have same performance if
clock rate and program lengths are equal.

= RISC moves less frequent operations into software, thus dedicating
hardware resources to the most frequently used operations.

= Representative systems:

= Intel 1860
= Motorola M88100
= AMD 29000

Ex1: The Sun Microsystems SPARC architecture

¥

Source 1

Register Files (136x32)

Source 2

Yy ¥

Y v

Yy VY Yy ¥
pimetesl [snum
program| Y .
Ty [l A
AddressY M-[’ﬁglsasstgp » Ingtergg(tjgn

Instructions

(a) The Cypress CY7C601 SPARC processor

L]
.

FPU ON SEPARATE CHIP
69 INSTR.

®

32 SINGLE PRECISION
REG

16 DOUBLE PRECISION
REG

Address Data

Fi Static Flegister

;

|

FPP Results
A A A ¢
|Instrdction /Addres !
Buffer (2x64) .
Floating-point Pig:-libr:ted
Data Register Floating-point
File (32x32) Processor
*FP Operands T
Hegister
—— File o
L J Control FP Instructions
FPP
Instruction / FP Control
control Unit

(b) The Cypress CY7C602 floating-point unit

®

Previous Window

24 WINDOW REG-ONLY FOR
PROCEDURE

8 OVERLAPPING WINDOW

64 LOCAL REG

64 OVERLAPPED REG

8 GLOBAL REG

TOTAL 136 REG

REG WINDOW DIVIDED INTO 3 8
REG

INS, LOCALS.OUTS

ACTIVE WINDOW- CURRENTLY
RUNNING PROC

31] R G5
. Ins « Locals] Outs
r{24] r[16] (8] |
| r[31] {11231 r{15]
Acti indo .Ins | ¢ Locald .Outs
Active Wmdow 24] el 1
| 31 |29 115}
Next Window | . Ins «» Locals] Outs
_ 124} | 8]

7]
« Globals
0] __

6]

~ (a) Three overlapping register windows and the global registers

®

CWIM

\ w6 Locals

(b) Eight register windows forming a circular stack

Figure 4.8 The concept of overlapping .register windows in the SPARC architec-
ture. (Courtesy of Sun Microsystems, Inc., 1987)

®

SPARCS AND REGISTER WINDOWS

= The SPARC architecture makes clever use of the logical
procedure concept.

= Each procedure usually has some input parameters, some local
variables, and some arguments it uses to call still other
procedures.

= The SPARC registers are arranged so that the registers
addressed as '‘Outs” in one procedure become_ available as
“Ins” in a called procedure, thus obviating the need to copy data
between registers.

= This is similar to the concept of a “stack frame” in a higher-level
language.

®

EX2: INTEL 860 PROCESSOR ARCHITECTURE

= Introduced by Intel Corporation in 1989.

=It is a 64 bit RISC processor fabricated on a

single chip containing more than one million
transistors.

=There are 9 functional units interconnected by
multiple data paths with widths ranging from 32
to 128 bits.

= All external or internal address buses are 32 bit
wide.

= All external or internal data bus is 64 bits wide.

External Address

e /32 |
Instruction Cache Ma'::mw Data Cache
(4K Bytes) 7 A (8K Bytes)
Inst. I Data
ache
Address Address Data
FP instruction 128
B4 = = A 1
ora .
Ina»tn.n::-tir:mn#l2 32 32’ 13: ‘
External RISC Floating point
Data —s—<—p| BIJS‘%‘I:ITH'DI Integer Unit Control Unit
64 Core Registers FP Registers
64 64
Dest
Srci
Src2

4

1 ;
Graphics Unit : Pipelined
| Piosiend Mopler
I Merge Register Unit

Figure 4.9 Functional units and data paths of the Intel i860 RISC microprocessor.
{Courtesy of Intel Corporation, 1990)

©

= Instruction cache has 4Kbytes organized as a two way
set-associative memory with 32 bytes per cache block.
It transfers 64 bits per clock cycle.

= Data cache is a two way set-associative memory of
8Kbytes.It transfers 128 bits per clock cycle. Write-back
policy is used.

= Bus control co-ordinates the 64 bit data transfer
between chip and outside world.

®

= MMU implements protected 4Kbyte paged
virtual memory of 232 bytes via TLB.

= There are two floating point units: multiplier-unit
and adder-unit which can be used separately or
simultaneously under coordination of the
floating point control unit.

= Both integer unit and floating point control unit
can execute concurrently.

®

=Graphics unit executes integer operations
corresponding to 8,126,32 bit pixel data types.

= This unit supports three-dimensional drawing in
a graphics frame buffer with color intensity,
shading and hidden surface elimination.

= Merge register is used only by vector integer
instructions.

=1860 executes 82 instructions including 42 RISC
integer, 24 floating point,10 graphics and 6
assembler pseudo operations.

= All these instructions execute in one cycle.

®

176 Processors and Memory Hierarchy

31 o

oF l
d.FP-OP
63 d.FP-OP or CORE-OP| Enter Eﬁ*fgla;::sé:*“dh*gﬁ‘
CORE-OP d.FP-OP Dual-Instruction Mode.
CORE-OP FP-OP
CORE-OP FP-OP
oP
oP Leawve Dual -Instruction Mode
a1]
oP
d.FP-OP
63 FP-OP Temporary Dual-
[CORE-OF FP-OP Instruction Mode
oP
= |

(a) Dual-instruction mode transitions

Source 1 Ej Source 2 Destination
Op1 op2

Multiply Unit (SP)

Result
= :i Kr x Source 2
Op1 Oop2
Adder Unit
Result

Kr x Source 2 + Source 1

(b} Dual operations in floating-point units

Figure 4.10 Dual instructions and dual operations in the i860 processor.

- - - e e tie clemAime and hidden surface elimination. The merge

CISC VS. RISC

= CISC Advantages

= Smaller program size (fewer instructions)
= Simpler control unit design
= Simpler compiler design

= RISC Advantages
= Has potential to be faster

= Many more registers

= RISC Problems
= More complicated register decoding system
= Hardwired control is less flexible than microcode

4.2 SUPERSCALAR AND VECTOR
PROCESSORS

= A CISC or a RISC scalar processor can be improved with a superscalar or vector
architecture.

= Scalar processors are those executing one instruction per cycle.
= Only one instruction is issued per cycle, and

= only one completion of instruction is expected from the pipeline per cycle.

= In a superscalar processor, multiple instructions are issued per cycle and multiple
results are generated per cycle.

= A vector processor executes vector instructions on arrays of data;

= each vector instruction involves a string of repeated operations, which are ideal for
pipelining with one result per cycle.

®

SUPERSCALAR PROCESSORS

= These are designed to exploit more instruction-
level parallelism in user programs.

= Only independent instructions can be executed in
parallel without causing a wait state.

= The instruction-issue degree 2 to 5 in practice.

®

= Pipelining in Superscalar Processors The fundamental structure of a three-issue
superscalar pipeline is illustrated in Fig. 4.11.

= Superscalar processors were originally developed as an alternative to vector
processors,

= with a view to exploit higher degree of instruction level parallelism.

LY | sich Omcode Exscute Wels back

w1 I | | | | | | L >
0 1 2 3 4 5 & 7 B 8 TmelinBaseCycles

Figure 4.11 A superscalar processor of degree m = 3.

= A superscalar processor of degree m can issue m instructions per cycle.
= the base scalar processor, implemented either in RISC or CISC, has m = 1.

= In order to fully utilize a superscalar processor of degree m, m instructions must be
executable in parallel.

= This situation may not be true in all clock cycles. In that case, some of the pipelines
may be stalling in a wait state.

180 Processors and Memory Hierarchy

nstruction
Memo

"””””l o T F N R A
Z ¥] ¥ |
nstruction [.
Cache : Register Reorder
; ile Buffar
e e i

T I T X I I
1 I T m I 1

Branch AlLU Shifter Load Store
[¥
Integer Unit (RISC cora) L Y
I" g L C ol s Oy
Floating-point Unit ¥]]
Registar Raordar
ile Bulfer

I

1
S T O A

¥ 3 ¥

Float Float Float Float Float Float
Add Convert Multiply Divide Load Store

LA AALATAAALAAATASEAAAAAALALAELATAALALALALASAAALALLLALLEAAAAA LA AL A LA LA 4!

'"'r’-r"'+—"'ca-'-r+"‘:.:x.+""’l"+t.'c’-"-- - --c-"""ir’cla oo

Yy * ¥

&
Addr1 v Data

Data

Data > ach
cache

Figure 4.12 A typical sup-erscalar RISC processor architecture consisting of an
integer unit and a floating-peint unit. (Courtesy of M. Johnson, 1991;
reprinted with permission from Prentice-Hall, Inc.)

-

= A typical superscalar architecture for a RISC processor is shown in Fig. 4.12.
= Multiple instructions pipelines are used.
= Instruction cache supplies multiple instructions per fetch.

= Multiple functional units are built into the integer unit and into the floating —point
unit.

= Multiple data buses exist among the functional units.
= IBM RS/6000,DEC 21064,Intel i960CA are examples of superscalar processors

®

*Due to the reduced CPI and higher
clock rates used, most superscalar
processors outperform scalar

PIoCessors.

=The maximum number of instructions
issued per cycle ranges from two to

five in these superscalar processors.

"Register files in IU and FPU each have
32 reqgisters. Both IU and FPU are

implemented on the same chip.

=Superscalar degree is low due to
limited instruction parallelism that can
be exploited in ordinary programs.

Reservation stations and reorder
buffers can be used to establish

instruction windows.

=The purpose is to support instruction
look ahead and internal data
forwarding, which is needed to
schedule multiple instructions through
the multiple pipelines simultaneously.

Example: IBM RS/6000

|IBM announced this superscalar RISC

{Immrucson Cacne

system in 1990. Rt i osoriad 1 | (B Byney
There are 3 parallel functional units; ? S— '
branch processor, fixed-point unit, and e ! Instuction
floating-point unit. P o Fgatagoon
T o IOCEA SO
The branch processor can arrange the i I 1]
- 1 by

execution of up to 5 IPC. .

g . . —— X A B4 I Bl £ a8
It is hardwired rather than micro- fgead o Y v ' |

: e =
programmed control unit. ;| Sopes ol gt
i ¢ VO Indertace (BAK B

The system uses a number of wide - | i, |
buses. These will provide the high G o pata) .
: n : . F.)y 13 F
instruction and data bandwidths requirec ... 1 I [RS | Y
for superscalar implementation. ! !

This system design is optimized to

Mam Mamory (B0 128 MBvtos

perform well in numerically intensive
scientific and engineering applications.

The POWER architecture of the IBM RISC
System /6000 superscalar processor,

4.2.2 VLIW ARCHITECTURE

=This architecture is generalized from two well
established concepts:

=horizontal micro coding and superscalar
processing.

»The instruction word has hundreds of bits in
length.

= Multiple functional units are used concurrently .

= All functional units share the use of common
large register file.

®

4.2 Superscalar and Vector Processors

183

Momory |+ Register File
1
y 3 3
Y
Load/Store | FPAdd | FPMuttiply | Branch | ees |integer ALU

(a) A typical VLIW processor and instruction format

ifetch Decods Execute Writs back
3 operations

.
9 Time in Base Cycles

(b) VLIW execution with degree m = 3

Figure 4.14 The architecture of a very long instruction word (VLIW) processor
and its pipeline operations. (Courtesy of Multiffow Computer, Inc., 1987)

®

=Different fields of the long instruction

word carry the opcodes to be
dispatched to different functional
units.

Programs written I1n conventional
short instruction words(32 bits) must
be compacted together to form the
VLIW instructions.

PIPELINING IN VLIW PROCESSORS

=VLIW machines behave much like superscalar
machines with three differences.

1. Decoding of VLIW instructions is easier than
that of superscalar instructions.

2. Code density of superscalar machine is better
when the available instruction-level parallelism
1Is less than that exploitable by the VLIW
machine.

=This is because the fixed VLIW format includes bits
for non executable operations, while the superscalar
processor issues only executable instructions.

Superscalar machine can be
object-code-compatible with a
large family of nonparallel
machines, but VLIW machine
exploiting different amounts of
parallelism would require different
instruction sets.

=Instruction parallelism and data
movement in a VLIW architecture are
specified at compile time.

*Run-time scheduling and
synchronization are thus completely
eliminated.

One can view VLIW processor as an
extreme of superscalar processor in
which all independent or unrelated
operations are already synchronously
compacted together in advance.

VLIW OPPORTUNITIES:

=Random parallelism among scalar operations is
exploited instead of regular or synchronous
parallelism as 1n a vectorized supercomputer or in
an SIMD computer.

=Success depends heavily on the efficiency in code
compaction.

=VLIW architecture is totally incompatible with that
of any conventional general-purpose processor.

€

= Instruction parallelism embedded in the compacted
code may require a different latency to be executed by
different functional units even though the instructions
are issued at the same time.

= Therefore, different implementations of the same VLIW
architecture may not be binary-compatible with each
other.

=By explicitly encoding parallelism in the long
instruction, a VLIW processor can eliminate the
hardware or software needed to detect parallelism.

®

= Advantage of VLIW is simplicity in hardware
structure and instruction set.

=It can perform well in scientific applications
where the program behavior is more predictable.

=In general-purpose applications, the architecture
may not be able to perform well. Due to the lack
of compatibility with conventional hardware and
software, the architecture is not entered the
mainstream of computers.

=The dependence on trace-scheduling and code-
compaction has prevented it from gaining
acceptance in the commercial world.

®

VECTOR PROCESSORS

= A vector processor is a coprocessor designed to perform vector computations.

= a processor that is able to process sequences of data with a single instruction.

= A vector is a one-dimensional array of data items (each of the same data type).

= Vector processors are often used in multipipelined supercomputers.

= Architectural types include:
= register-to-register (with shorter instructions and register files)
= memory-to-memory (longer instructions with memory addresses)

SCALAR VECTOR
(1 operation) (N operations)
iM
N 34 1 = ey
_;)cu:'. Xy, 21 e add. .y w3, vl, vZ / :—.:g:;
|

REGISTER-TO-REGISTER VECTOR INSTRUCTIONS

= Assume V, is a vector register of length n, s; is a scalar register, M(1:n) is a memory
array of length n, and “0” is a vector operation.

= Typical instructions include the following
= V, 0V, >V, (element by element operation)
= 5,0V, >V, (scaling of each element)
= V,0V, > s, (binaryreduction - i.e. sum of products)

M(1l:n) >V, (load a vector register from memory)

V, - M(1l:n) (store a vector register into memory)

oV, >V, (unaryvector --i.e. negation)

oV, > s (unary reduction -- i.e. sum of vector)

MEMORY-T0-MEMORY VECTOR INSTRUCTIONS

= Tpyical memory-to-memory vector instructions (using the same notation as given
in the previous slide) include these:

= M,;(1:n) o M,(1:n) > M;(1:n) (binary vector)

= 5,0 M,(1:n) > M,(1:n) (scaling)

= 0 M;(1:n) > M,(1:n) (unary vector)

= M,(1:n) o M,(1:n) - M(k) (binary reduction)

PIPELINES IN VECTOR PROCESSORS

= Vector processors can usually effectively use large pipelines in parallel, the
number of such parallel pipelines effectively limited by the number of functional
units.

= As usual, the effectiveness of a pipelined system depends on the availability and
use of an effective compiler to generate code that makes good use of the pipeline
facilities.

SYMBOLIC PROCESSORS

symbolic Processing has been used in many areas like theorem proving, pattem
tecognition, expert systems and so on. Herein, we have 4 modern and non=algorithimic
approach of problem solving, Symbolic processors include prolog processars Lisp pro-
cessors or symbolic manipulators, [t depends on various features ke how knowledge
is represented? What common operations are o be performed? What are the propertics
of algonthms? And s on. In symbolic processing, we deal with logie programs, lists
objects, scripts, net, frames and neural nebworks. No Hoatingspoint operations are done
here,

For exanple : Symbohics 3600 Lisp processor

4.3 HIERARCHICAL MEMORY TECHNOLOGY

= Storage devices such as registers, caches, main memory, disk devices, and backup
storage are often organized as a hierarchy as depicted in Fig. 4.17.

Ragistars

Level 0 in CPU

Main Mamory
(dRAMS)

Disk Storage
'-’““'3/ (Solid-state, Magnelic) \

Increase in cost per bit

Increase in capacity and accoss lime

Backup Storage
Lavetd %Magneuc Tapes, Optical L'Hal'.s\

o Capaay ——|

Fig. 417 A four-level memory hierarchy with increasing capacity and decreasing speed and cost from low to
high levels @

= Each level is characterized by five parameters:
= access time t, (round-trip time from CPU to ith level)

= memory size s; (number of bytes or words in the level)
= cost per byte c; (estimated by the product c; s))

= transfer bandwidth b, (rate of transfer between levels)
= unit of transfer x; (grain size for transfers)

MEMORY GENERALITIES

= It is almost always the case that memories at lower-numbered levels, when
compare to those at higher-numbered levels

= are faster to access,

= are smaller in capacity,

= are more expensive per byte,
= have a higher bandwidth, and
= have a smaller unit of transfer.

= In general, then, t. ;, <t,s ; <s,c,_,>c,b,;>b,and x,, <x.

MEMORY CHARACTERISTIC OF A TYPICAL MAINFRAME COMPUTER IN 1993

. CPU Main Disk Tape
Memory Characteristics Register Cache Memory Storage Unit
Access time ¢ 10 ns 25 ~40 ns 60 ~ 100 ns 12 ~20 ms 2 ~ 20 min
Capacity s 512 bytes 128 Kbytes 512 Mbytes 60 ~ 228 GB 0.5~2TB
Bandwidth 5, 400~800 MB/s 250~400 MB/s 80~133 MB/s 3~5 MB/s 0.18 ~0.23 MB/s
4 ~ 7 byt 32 byt 0.5 ~ 1 Kbyt ~
Unit of transfer x; yies yies ytes |15~ 512 I_(bytes per Backup storage
per word per block per page file
Allocation management C(?mpller Hardware Operating Operating Operating
assignment Control system system / user system / user

Information stored in a memory hierarchy (M1,M2,...Mn) satisfies 3 important
properties:

= Inclusion
= Coherence

= locaity

Inclusion property

THE INCLUSION PROPERTY

= The inclusion property is stated as:

= The set inclusion relationship implies that all information items are originally
stored in the outermost level Mn. During the processing, subsets of Mn are copied
into Mn-1. Similarly, subsets of Mn-1 are copied into Mn-2, and so on.

= The inverse, however, is not necessarily true. That is, the presence of a data item in
level M,,, does not imply its presence in level M.. We call a reference to a missing
item a ‘“miss.”

Inclusion property and data transfer

CPU

Registers

/[

1. Access by word (4 Bytes)
from cache block of 32 bytes,

2. Access by block (32 Bytes)
from a memory page of 32 block

or 1 Kbytes, such as
block b from page B

3. Access by page (1 Kbytes) from a
file consisting of many pages, such
as page A and page B in segment F

4. Segment transfer with different
number of pages

¢ b such as block a
M, - a
(Cache) P
/
/ 7
M; : i :
(Main memory) ¢ A
[a]
/"] Page A . /
// /
¢|_ SegmeptF | Segment G
Ms : : a E
(Disk Storage) Page A éﬁ : /%
I
7 \
/ \
/ M4 : Magnetic Tape Un\\t

4 Segment F E(Backup storage)

7

Segment G

THE COHERENCE PROPERTY

Coherence Property The coherence property requires that copies of the same mformation item at
successive memory levels be consistent. [f a word 1s modified in the cache, copies of that word must be updated
immediately or eventually at all higher levels. The hierarchy should be maintained as such. Frequently used
mformation 1s often found n the lower levels 1n order to minimize the effective access time of the memory
hierarchy. In general, there are two strategies for maintaining the coherence i a memory hierarchy.

COHERENCE STRATEGIES

= Write-through

= As soon as a data item in M, is modified, immediate update of the corresponding data
item(s) in M,,,, M, ,,, ... M, is required. This is the most aggressive (and expensive)
strateqgy.

= Write-back

= The update of the data item in M,,, corresponding to a modified item in M, is not updated
until it (or the block/page/etc.in M, that contains it) is replaced or removed. This is the
most efficient approach, but cannot be used (without modification) when multiple
processors share M, , ..., M,.
Writeback Writethrough

CPU core CPU core
CBQ___
_ X= 300 | |

&

LOCALITY OF REFERENCES

= In most programs, memory references are assumed to occur in
patterns that are strongly related (statistically) to each of the
following:

= Temporal locality — if location M is referenced at time t, then it (location M) will be
referenced again at some time t+At.

= Spatial locality — if location M is referenced at time t, then another location M+Am
will be referenced at time t+At.

= Sequential locality — if location M is referenced at time t, then locations M+1, M+2,
.. will be referenced at time t+At, t+At’, etc.

= In each of these patterns, both Am and At are “small.”

- Hennessy&Patterson suggest that 90 percent of the execution time in
most programs is spent executing only 10 percent of the code.

€

Temporal Locality

Repeatedly referring to same data in a short time span

Spatial Locality

Referring to data that is close together in memory

Sequential Locality

Referring to data that is arranged lingarly in memory

Locality Example

sum = 0;

for (i = 0; i < n; i++)
aum += afi];

return sum;

Data references
s Reference array elementsin

succession (stride-1 reference pattern).

s Reference variable sum each iteration.

Instruction references
» Reference instructions in sequence.
s Cycle through loop repeatedly.

Spatial locality

Temporal locality

Spatial locality

Temporal locality

WORKING SETS

= The set of addresses (bytes, pages, etc.) referenced by a program during the
interval from t to t+o, where o is called the working set parameter, changes slowly.

= This set of addresses, called the working set, should be present in the higher levels
of M if a program is to execute efficiently (that is, without requiring numerous
movements of data items from lower levels of M). This is called the working set

principle.

Working-Set Example
Suppose that A = 10 (unrealistically small)

Consider the working set at two different fimes, t ;and 1:j

Feference string:

o5 10, 5.3, 3. 301,55, 8 100, 8. 03 6.8 608 EE T, 70,8, 0 0 108 T

| TA
I

' A=

Ly

At tithe working setis {3, 100, 101, 103}

A= i

At tin the worling setis {3, 6, 100, 101, 103}

| !
A=10 tj
At 1:j the worling set 1z {6, 7, 101, 103}

HIT RATIOS

= When a needed item (instruction or data) is found in the level of the memory
hierarchy being examined, it is called a hit. Otherwise (when it is not found), it is
called a miss (and the item must be obtained from a lower level in the hierarchy).

= The hit ratio, h, for M, is the probability (between 0 and 1) that a needed data item
is found in level memory M,.

= The miss ratio is obviously just 1-h,.

= We assume hy=0and h = 1.
= CPU access always M1 first and access to the outermost memory Mn is always hit.

ACCESS FREQUENCIES

= The access frequency f; to level M, is
fi = (1-h;) x (1-hy) x ... x h,.

= Note that f, = h;,and

EFFECTIVE ACCESS TIMES

= There are different penalties associated with misses at
different levels in the memory hierarcy.

= A cache miss is typically 2 to 4 times as expensive as a cache hit
(assuming success at the next level).

= A page fault (miss) is 3 to 4 magnitudes as costly as a page hit.

= The effective access time of a memory hierarchy can be
expressed as

Tejyf :;fi'ti

= hltl +(1_h1)h2t2 +“.+(1_h1)(1_h2)‘“(1_hn—l)hntn

& The first few terms in this expression dominate, but the
effective access time is still dependent on program behavior
and memory design choices. @

Hierarchy Optimization The total cost of a memory hierarchy 1s estimated as follows:

n

Ciotal= Z Ci*S;

i=1

(4.4)

Example 1. Comsider a three level memory hivrarchoy (M, — M) as shown belowe -

Memory level Access Hme Caprarcily CostiKR
M feache) fy = 23 nis %, = 512 KB C, = §1.25
M, TMM) a= 1 &, = 32 MB L, = 5002
M (Dhisk) fy = 4 s S; =7 Cy = SO0002
It is desired that ;
Ty = 104 ps
I, = 09 (for M)

But C, ., = S15HN).
Fintd 5y, 1y (marked as 7 in tablet 7

Solution. We know that the cost of Memory hwn:rch:, is given by the formula
C = G5 + G5 + C5; < 15000

or 125 (512) + 0.2 (32) + IJ{HJ'[E -[.!'.1_]] = 1 5(N)

or 5, = 39.8 Gbytes
P o
T = My + (1 =Mty + (1 = h) (1= gdigdy £ 1004
o 1004 % 107" = 098 x 25 % 107 + 0,02 = 0.9 = £, + 0.02 = 0.1
x 1 x4 x 107

903 ns.

or {,

4.4 VIRTURL MEMORY

/_‘\HARD DISK

‘ LESS USED DATA |

VIRTUAL
RAM MEMORY
_ THE CPU | eac

VIRTUAL MEMORY MODELS

= The main memory is considered the physical memory in which multiple running
programs may reside.

= However, the limited-size physical memory cannot load in all programs fully and
simultaneously.

= The virtual memory concept was introduced to alleviate this problem.

= The idea is to expand the use of the physical memory among many programs with the help of
an auxiliary (backup) memory such as disk arrays.

= Only active programs or portions of them become residents of the physical memory at
one time.

= Active portions of programs can be loaded in and out from disk to physical memory
dynamically under the coordination of the operating system.

= To the users, virtual memory provides almost unbounded memory space to work with.
Without wvirtual memory, it would have been impossible to develop the
multiprogrammed cr time-sharing computer systems that are in use today.

®

Address Spaces Each word in the physical memory is identified by a unique physical address. All memory
words in the main memory form a physical address space. Virtual addresses are those used by machine
instructions making up an executable program.

Logical address:-
a)Logical address is address generated by CPU during execution

b) It is virtual address and user has access to use only logical address known as virtual
address.

c) Set of all logical address is known as logical address space.

d) This address act as reference in creating physical address

€) It deals with compile time address binding

Physical address:-

a) Physical Address refers to location in memory unit(the one that is loaded into memory).
b) It cannot be viewed by user directly.

c) Memory management unit computes the physical address

d) Set of all physical address is physical address space.

€) It deals with load time address binding.

VIRTUAL T0 PHYSICAL MAPPING

= The mapping from virtual to physical addresses can be formally
defined as follows:

-

if m € M has been allocated to store
m? . . .
Jv=A the data identified by virtual address m

2 if data v is missing in M

¢ The mapping returns a physical address if a
memory hit occurs. If there is a memory miss, the

referenced item has not yet been brought into
primary memory.

®

TWO VIRTUAL MEMORY MODELS

Virtual memony

Process 1

LR

mapping

Wirtual memory

Frocess n

a)Private virtual memory

Process Process Process
Invocation response response response
3 Invocation Invocation
Physical memony
Memory Memory Memory
manager manager manager

Shared Virtual memory

b)Shared virtual memory

PRIVATE VIRTUAL MEMORY

= In this scheme, each processor has a separate virtual address space, but all
processors share the same physical address space.

= Example

= VAX/11 and in most UNIX systems
= Advantages:

= Small processor address space

= Protection on a per-page or per-process basis

= Private memory maps, which require no locking
= Disadvantages

= The synonym problem — different virtual addresses in different/same virtual spaces
point to the same physical page

= The same virtual address in different virtual spaces may point to different pages in
physical memory

SHARED VIRTUAL MEMORY

= All processors share a single shared virtual address space, with each processor being
given a portion of it.

= Some of the virtual addresses can be shared by multiple processors.
= Example
= IBM801, RT, RP3, System 38, the HP Spectrum, the Stanford Dash, MIT Alewife, Tera, etc
= Advantages:
= All addresses are unique
= Synonyms are not allowed
= Disadvantages
= Processors must be capable of generating large virtual addresses (usually > 32 bits)
= Since the page table is shared, mutual exclusion must be used to guarantee atomic updates
= Segmentation must be used to confine each process to its own address space
= The address translation process is slower than with private (per processor) virtual memory

€

AGING, AND SEGMENTATION

MEMORY ALLOCATION

= Both the virtual address space and the physical address space are divided into

fixed-length pieces

= In the virtual address space these pieces are called pages.

= In the physical address space they are called page frames.

= The purpose of memory allocation is to allocate pages of virtual memory using the
page frames of physical memory.

disk RAM page table
ola 0 5: i
1 b 1 A=
2| la =
h —
sld] s 7=
“ i pages page framesg
610

ADDRESS TRANSLATION MECHANISMS

= [Virtual to physical] address translation requires use of a translation
map.
= The virtual address can be used with a hash function to locate the translation
map (which is stored in the cache, an associative memory, or in main memory).

= The translation map is comprised of a translation lookaside buffer, or TLB
(usually in associative memory) and a page table (or tables). The virtual address
is first sought in the TLB, and if that search succeeds, not further translation is
necessary. Otherwise, the page table(s) must be referenced to obtain the
translation result.

= If the virtual address cannot be translated to a physical address because the
required page is not present in primary memory, a page fault is reported.

®

Virtual
addrress

— o Mapping

function

Hashing Congruence

Pointer _| Translation

Maps

et Py SiCAI BdTESS

1

Direct

Maaping Mapping

Inverted

TLB
(ATC) One

Multl- Associative Inverted

level PT level PT PT FT

(a) Virlual addrress translation schemes (PT = page table)

Viriual address

= Page Faull

Paga

Fage Eh:lm Word

Y (migs) I‘E':&
TLB N PTs U
(hity| T___Update | page frame

Page

Block Ward

Physcial address

(b) Use of a TLB and FPTs for address translation

Example translation

_ Virtual page number Page offset
Virtual Address 0x00003 “Yox20a °

[—
9xee83
Page Table § e

0x000Q3204

20 bits:
Virtual Page
Murnber

Physical Address 7 oxo006 “Mox204 °

Physical page number Page offset
el il =L 4

12 bits:

Page offsat

virtual address o
page - physica
CPU [page MO fFset frame | Ot T Trees
Page # Page [rame H
Page # = 140 31 i
compared = 20 38
to all keys = 13 22 TLB 1023
simultancously |ls»{ 120 14 hie ;
19 100 8
If found, - 2] 56 5
- TLB hat - = 860 33 4
ne memory key value 3
access required TLB %
; TLB miss 0 physical
If not, TLB miss Page Table memory

Paged Memory Paging is a technique for partitioning both the physical memory and virtual memory mto
fixed-size pages. Exchange of information between them is conducted at the page level as described before.
Page tables are used to map between pages and page frames. These tables are implemented in the main
memory upon creation of user processes. Since many user processes may be created dynamically, the number
of PTs maintained in the main memory can be very large. The page table entries (PTLEs) are similar to the
TLB entries, containing essentially (virtual page. page frame) address pairs.

Note that both TLB entries and PTEs need to be dynamically updated to reflect the latest memory reference
history. Only “snapshots™ of the history are maintained in these translation maps.

If the demanded page cannot be found in the PT. a page fault is declared. A page fault implies that
the referenced page is not resident in the mam memory. When a page fault occurs, the running process is
suspended. A context switch is made to another ready-to-run process while the missing page is transferred
from the disk or tape unit to the physical memory.

Segmented Memory A large number of pages can be shared by segmenting the virtual address space
among multiple user programs simultaneously. A segment of scattered pages 1s formed logically 1n the virtual
memory space. Segments are defined by users in order to declare a portion of the virtual address space.

In a segmented memory system, user programs can be logically structured as segments. Segments can
invoke each other. Unlike pages, segments can have variable lengths, The management of a segmented
memory system 1s much more complex due to the nonuniform segment size.

Segments are a user-oriented concept, providing logical structures of programs and data in the virtual
address space. On the other hand, paging facilitates the management of physical memory. In a paged system,
all page addresses form a linear address space within the virtual space.

The segmented memory is arranged as a two-dimensional address space. Each virtual address in this space
has a prefix ficld called the segment number and a postfix field called the offset within the segment. The offser
addresses within each segment form one dimension of the contiguous addresses. The segment numbers, not
necessarily contiguous to cach other, form the second dimension of the address space.

Paged Segments The above two concepts of paging and segmentation can be combined to implement a
type of virtual memory with paged segments. Within each segment, the addresses are divided into fixed-size
pages. Each virtual address is thus divided into three fields. The upper field is the segment number, the middle
one 1s the page number, and the lower one 1s the offset within each page.

Paged segments offer the advantages of both paged memory and segmented memory. For users, program
files can be better logically structured. For the OS, the virtual memory can be systematically managed with

fixed-size pages within each segment. Tradeoffs do exist among the sizes of the segment ficld, the page field,
and the offset field. This sets limits on the number of segments that can be declared by users, the segment size
(the number of pages within each segment), and the page size.

INVERTED PAGING

= A large virtual address space demands either large PTs or multilevel direct paging
which will slow down the address translation process and thus lower the performance.

= Besides direct mapping, address translation maps can also be implemented with
inverted mapping (Fig.4.21c).

= An inverted page table is created for each page frame that has been allocated to users. Any
virtual page number can be paired with a given physical page number.

= Inverted page tables are accessed either by an associative search or by the use of a hashing
function.

= Given a virtual address to be translated, the hardware searches the inverted PT for that
address and, if it is found, uses the table index of the matching entry as the address of
the desired page frame.

= The size of an inverted PT is governed by the size of the physical space, while that of traditional
PTs is determined by the size of the virtual space.

= Because of limited physical space, no multiple levels are needed for the inverted page table.

€

15

(c) Inverted address mapping

4 28
s|K| Se LD Sreg Offset
Segment Il Seisit
! ;
Segment Registers Segment ID | Offset
28

FPhysical address

Virtual address

