
Module 2

 This chapter presents modern processor technology and the supporting memory
hierarchy.

 We begin with a study of instruction-set architectures including CISC and RISC, and
we consider typical superscalar,VLIW, superpipelined, and vector processors.

 The third section covers memory hierarchy and capacity planning and final section
introduces virtual memory, address translation and page replacement methods.

Architectural families of modern computers are

 CISC

 RISC

 Superscalar

 VLIW

 Super pipelined

 Vector processors

 Symbolic processors

Scalar and vector processors are numerical computation.

Symbolic processors have been developed for AI applications.

 Various processor families can be mapped onto a coordinated space of

clock rate versus cycles per instruction(CPI).

 Clock speed is the amount of cycles the CPU can handle in one second and CPI

means the amount of cycles it takes for the CPU to complete the instruction.

 As implementation technology evolves rapidly, the clock rates of various

processors are gradually moving from low to higher speeds toward the

right of the design space.

 Manufacturers are trying to lower the CPI rate using hardware and software

approaches.

Under both CISC and RISC
categories, products designed for
multi-core chips, embedded
applications, or for low cost
and/or low power consumption,
tend to have lower clock speeds.
High performance processors
must necessarily be designed to
operate at high clock speeds.

The CPI of different CISC
instructions varies from 1 to
20. Therefore, CISC
processors are at the upper
part of the design space.

CISC processors:

Intel i486,M68040,VAX/8600,IBM 390.

Clock rate: 33 to 50 MHz.

CPI:varies from 1 to 20 cycles.

Microprogrammed control.

RISC processors:

Intel i860,SPARC,MIPS R3000,IBM RS/6000.

Clock rate: 20 to 120 MHz.

CPI:1 to 2 cycles.

Hardwired control.

Super scalar processors:

Intel i960CA,IBM RS/6000,DEC 21064.

Multiple instructions are issued simultaneously during each cycle.

Clock rate: 20 to 120 MHz.

CPI: .2 to .5 cycles.

 Subclass of RISC processors

Very long instruction word(VLIW):

Uses more functional units than superscalar processor.

Clock rate: 5 to 50 MHz.

CPI: .1 to .2 cycles.

Uses very long instructions (256 to 1024 bits per instruction.)

Implemented with micro programmed control.

Super pipelined processors:

Uses multiphase clocks with a much increased clock rate.

Clock rate: 100 to 500 MHz.

CPI: 1 to 5 cycles.

Vector supercomputers:

Uses multiple functional units for concurrent scalar and vector
operations.

Processors are super pipelined.

Very high clock rate:100 to 1000 MHz.

Very low CPI:.1 to .2 cycles.

The execution cycle of a typical instruction includes four phases.

 Fetch

 Decode

 Execute

 Write-back

Pipelining is an implementation technique where multiple instructions are overlapped in
execution. The computer pipeline is divided in stages. Each stage completes a part of an
instruction in parallel. The stages are connected one to the next to form a pipe - instructions
enter at one end, progress through the stages, and exit at the other end.

Pipelining does not decrease the time for individual instruction execution.
Instead, it increases instruction throughput.

Pipeline cycle: It is defined as the time required for each phase to complete its
operation assuming equal delay in all phases.

Instruction pipeline cycle: the clock period of the instruction pipeline.

Instruction issue latency: the time (in cycles) required between the issuing of two
adjacent instructions.

Instruction issue rate: the number of instructions issued per cycle.

Simple operation latency: simple operations are integer adds, loads, stores, etc.

Complex operations are divides, cache misses.

Resource Conflicts: two or more instructions demand use of the same functional unit
at the same time.

 A base scalar processor:
 issues one instruction per cycle
 has a one-cycle latency for a simple operation
 has a one-cycle latency between instruction issues
 can be fully utilized if instructions can enter the pipeline at a rate on one per cycle

 For a variety of reasons, instructions might not be able to be pipelines as
agressively as in a base scalar processor. In these cases, we say the
pipeline is underpipelined.

 CPI rating is 1 for an ideal pipeline. Underpipelined systems will have
higher CPI ratings, lower clock rates, or both.

 The control unit generates control
signals required for the fetch, decode,
ALU operation, memory access, and
write result phases of instruction
execution

 The instruction set of a computer specifies the primitive commands or machine
instructions that a programmer can use in programming the machine.

 The complexity of an instruction set is attributed to the instruction formats,
addressing modes, general purpose registers, opcode specification and flow
control mechanisms used.

 Two classes
 RISC
 CISC

 Simple instruction set – high cost of hardware
 more and more functions were built into the hardware, making the instruction set large

and complex.

 A typical CISC instruction set contains approximately 120 to 350 instructions using
variable instruction/data formats,

 uses a small set of 8 to 24 general-purpose registers (GPRs),

 and executes a large number of memory reference operations based on more than
a dozen addressing modes.

 only 25% of the instructions of a complex instruction set are frequently used about
95% of the time. This implies that about 75% of hardware supported instructions
often are not used at all.
 Pushing rarely used instructions into software would vacate chip areas for building more

powerful RISC

 CISC
 Unified cache for instructions and data (in most cases)
 Microprogrammed control units and ROM in earlier processors (hard-wired controls units

now in some CISC systems)

 RISC
 Separate instruction and data caches
 Hard-wired control units

 A scalar processor executes with scalar data.
 Early systems had only integer fixed point facilities.

 Modern machines have both fixed and floating point facilities, sometimes as
parallel functional units.

 Many CISC scalar machines are underpipelined.
 Underpipelined systems will have higher CPI ratings, lower clock rates, or both.

 Representative systems:
 VAX 8600
 Motorola MC68040
 Intel Pentium

EX2: Motorola MC68040

 Designed to issue one instruction per cycle

 RISC and CISC scalar processors should have same performance if
clock rate and program lengths are equal.

 RISC moves less frequent operations into software, thus dedicating
hardware resources to the most frequently used operations.

 Representative systems:
 Sun SPARC
 Intel i860
 Motorola M88100
 AMD 29000

Ex1: The Sun Microsystems SPARC architecture

• FPU ON SEPARATE CHIP
• 69 INSTR.

• 32 SINGLE PRECISION
REG

• 16 DOUBLE PRECISION
REG

• 24 WINDOW REG-ONLY FOR
PROCEDURE

• 8 OVERLAPPING WINDOW
• 64 LOCAL REG
• 64 OVERLAPPED REG
• 8 GLOBAL REG
• TOTAL 136 REG
• REG WINDOW DIVIDED INTO 3 8

REG
• INS, LOCALS.OUTS
• ACTIVE WINDOW- CURRENTLY

RUNNING PROC

 The SPARC architecture makes clever use of the logical
procedure concept.

 Each procedure usually has some input parameters, some local
variables, and some arguments it uses to call still other
procedures.

 The SPARC registers are arranged so that the registers
addressed as “Outs” in one procedure become available as
“Ins” in a called procedure, thus obviating the need to copy data
between registers.

 This is similar to the concept of a “stack frame” in a higher-level
language.

 Introduced by Intel Corporation in 1989.

 It is a 64 bit RISC processor fabricated on a
single chip containing more than one million
transistors.

There are 9 functional units interconnected by
multiple data paths with widths ranging from 32
to 128 bits.

All external or internal address buses are 32 bit
wide.

All external or internal data bus is 64 bits wide.

 Instruction cache has 4Kbytes organized as a two way
set-associative memory with 32 bytes per cache block.
It transfers 64 bits per clock cycle.

 Data cache is a two way set-associative memory of
8Kbytes.It transfers 128 bits per clock cycle. Write-back
policy is used.

 Bus control co-ordinates the 64 bit data transfer
between chip and outside world.

MMU implements protected 4Kbyte paged
virtual memory of 232 bytes via TLB.

There are two floating point units: multiplier-unit
and adder-unit which can be used separately or
simultaneously under coordination of the
floating point control unit.

Both integer unit and floating point control unit
can execute concurrently.

Graphics unit executes integer operations
corresponding to 8,126,32 bit pixel data types.

This unit supports three-dimensional drawing in
a graphics frame buffer with color intensity,
shading and hidden surface elimination.

Merge register is used only by vector integer
instructions.

 i860 executes 82 instructions including 42 RISC
integer, 24 floating point,10 graphics and 6
assembler pseudo operations.

All these instructions execute in one cycle.

 CISC Advantages
 Smaller program size (fewer instructions)
 Simpler control unit design
 Simpler compiler design

 RISC Advantages
 Has potential to be faster
 Many more registers

 RISC Problems
 More complicated register decoding system
 Hardwired control is less flexible than microcode

 A CISC or a RISC scalar processor can be improved with a superscalar or vector
architecture.

 Scalar processors are those executing one instruction per cycle.
 Only one instruction is issued per cycle, and
 only one completion of instruction is expected from the pipeline per cycle.

 In a superscalar processor, multiple instructions are issued per cycle and multiple
results are generated per cycle.

 A vector processor executes vector instructions on arrays of data;
 each vector instruction involves a string of repeated operations, which are ideal for

pipelining with one result per cycle.

These are designed to exploit more instruction-
level parallelism in user programs.

Only independent instructions can be executed in
parallel without causing a wait state.

The instruction-issue degree 2 to 5 in practice.

 Pipelining in Superscalar Processors The fundamental structure of a three-issue
superscalar pipeline is illustrated in Fig. 4.11.

 Superscalar processors were originally developed as an alternative to vector
processors,
 with a view to exploit higher degree of instruction level parallelism.

 A superscalar processor of degree m can issue m instructions per cycle.

 the base scalar processor, implemented either in RISC or CISC, has m = 1.

 In order to fully utilize a superscalar processor of degree m, m instructions must be
executable in parallel.

 This situation may not be true in all clock cycles. In that case, some of the pipelines
may be stalling in a wait state.

 A typical superscalar architecture for a RISC processor is shown in Fig. 4.12.

 Multiple instructions pipelines are used.

 Instruction cache supplies multiple instructions per fetch.

 Multiple functional units are built into the integer unit and into the floating –point
unit.

 Multiple data buses exist among the functional units.

 IBM RS/6000,DEC 21064,Intel i960CA are examples of superscalar processors

Due to the reduced CPI and higher

clock rates used, most superscalar

processors outperform scalar

processors.

The maximum number of instructions

issued per cycle ranges from two to

five in these superscalar processors.

Register files in IU and FPU each have

32 registers. Both IU and FPU are

implemented on the same chip.

Superscalar degree is low due to
limited instruction parallelism that can
be exploited in ordinary programs.

Reservation stations and reorder

buffers can be used to establish

instruction windows.

The purpose is to support instruction

look ahead and internal data

forwarding, which is needed to

schedule multiple instructions through

the multiple pipelines simultaneously.

This architecture is generalized from two well
established concepts:
 horizontal micro coding and superscalar

processing.

The instruction word has hundreds of bits in
length.

Multiple functional units are used concurrently .

All functional units share the use of common
large register file.

Different fields of the long instruction
word carry the opcodes to be
dispatched to different functional
units.

Programs written in conventional
short instruction words(32 bits) must
be compacted together to form the
VLIW instructions.

VLIW machines behave much like superscalar
machines with three differences.

1. Decoding of VLIW instructions is easier than
that of superscalar instructions.

2. Code density of superscalar machine is better
when the available instruction-level parallelism
is less than that exploitable by the VLIW
machine.

This is because the fixed VLIW format includes bits
for non executable operations, while the superscalar
processor issues only executable instructions.

3. Superscalar machine can be
object-code-compatible with a
large family of nonparallel
machines, but VLIW machine
exploiting different amounts of
parallelism would require different
instruction sets.

Instruction parallelism and data
movement in a VLIW architecture are
specified at compile time.

Run-time scheduling and
synchronization are thus completely
eliminated.

One can view VLIW processor as an
extreme of superscalar processor in
which all independent or unrelated
operations are already synchronously
compacted together in advance.

Random parallelism among scalar operations is
exploited instead of regular or synchronous
parallelism as in a vectorized supercomputer or in
an SIMD computer.

Success depends heavily on the efficiency in code
compaction.

VLIW architecture is totally incompatible with that
of any conventional general-purpose processor.

 Instruction parallelism embedded in the compacted
code may require a different latency to be executed by
different functional units even though the instructions
are issued at the same time.

 Therefore, different implementations of the same VLIW
architecture may not be binary-compatible with each
other.

 By explicitly encoding parallelism in the long
instruction, a VLIW processor can eliminate the
hardware or software needed to detect parallelism.

Advantage of VLIW is simplicity in hardware
structure and instruction set.

 It can perform well in scientific applications
where the program behavior is more predictable.

 In general-purpose applications, the architecture
may not be able to perform well. Due to the lack
of compatibility with conventional hardware and
software, the architecture is not entered the
mainstream of computers.

The dependence on trace-scheduling and code-
compaction has prevented it from gaining
acceptance in the commercial world.

 A vector processor is a coprocessor designed to perform vector computations.
 a processor that is able to process sequences of data with a single instruction.

 A vector is a one-dimensional array of data items (each of the same data type).

 Vector processors are often used in multipipelined supercomputers.

 Architectural types include:
 register-to-register (with shorter instructions and register files)
 memory-to-memory (longer instructions with memory addresses)

 Assume Vi is a vector register of length n, si is a scalar register, M(1:n) is a memory
array of length n, and “ο” is a vector operation.

 Typical instructions include the following
 V1 οV2 V3 (element by element operation)
 s1 οV1 V2 (scaling of each element)
 V1 οV2  s1 (binary reduction - i.e. sum of products)
 M(1:n) V1 (load a vector register from memory)
 V1  M(1:n) (store a vector register into memory)
 οV1 V2 (unary vector -- i.e. negation)
 οV1  s1 (unary reduction -- i.e. sum of vector)

 Tpyical memory-to-memory vector instructions (using the same notation as given
in the previous slide) include these:
 M1(1:n) ο M2(1:n)  M3(1:n) (binary vector)
 s1 ο M1(1:n)  M2(1:n) (scaling)
 ο M1(1:n)  M2(1:n) (unary vector)
 M1(1:n) ο M2(1:n)  M(k) (binary reduction)

 Vector processors can usually effectively use large pipelines in parallel, the
number of such parallel pipelines effectively limited by the number of functional
units.

 As usual, the effectiveness of a pipelined system depends on the availability and
use of an effective compiler to generate code that makes good use of the pipeline
facilities.

 Storage devices such as registers, caches, main memory, disk devices, and backup
storage are often organized as a hierarchy as depicted in Fig. 4.17.

 Each level is characterized by five parameters:
 access time ti (round-trip time from CPU to ith level)
 memory size si (number of bytes or words in the level)
 cost per byte ci (estimated by the product ci si)
 transfer bandwidth bi (rate of transfer between levels)
 unit of transfer xi (grain size for transfers)

 It is almost always the case that memories at lower-numbered levels, when
compare to those at higher-numbered levels
 are faster to access,
 are smaller in capacity,
 are more expensive per byte,
 have a higher bandwidth, and
 have a smaller unit of transfer.

 In general, then, ti-1 < ti, si-1 < si, ci-1 > ci, bi-1 > bi, and xi-1 < xi.

Memory Characteristics CPU
Register Cache Main

Memory
Disk

Storage
Tape
Unit

Access time ti 10 ns 25 ~ 40 ns 60 ~ 100 ns 12 ~ 20 ms 2 ~ 20 min

Capacity si 512 bytes 128 Kbytes 512 Mbytes 60 ~ 228 GB 0.5 ~ 2 TB

Bandwidth bi 400~800 MB/s 250~400 MB/s 80~133 MB/s 3~5 MB/s 0.18 ~ 0.23 MB/s

Unit of transfer xi
4 ~ 7 bytes
per word

32 bytes
per block

0.5 ~ 1 Kbytes
per page

5 ~ 512 Kbytes per
file Backup storage

Allocation management Compiler
assignment

Hardware
Control

Operating
system

Operating
system / user

Operating
system / user

Information stored in a memory hierarchy (M1,M2,…Mn) satisfies 3 important
properties:

 Inclusion

 Coherence

 locaity

 The inclusion property is stated as:
M1  M2  ...  Mn

 The set inclusion relationship implies that all information items are originally
stored in the outermost level Mn. During the processing, subsets of Mn are copied
into Mn–1. Similarly, subsets of Mn–1 are copied into Mn–2, and so on.

 The inverse, however, is not necessarily true. That is, the presence of a data item in
level Mi+1 does not imply its presence in level Mi. We call a reference to a missing
item a “miss.”

Inclusion property and data transfer

CPU
Registers

b
a

B

Page A
a

b

Page A
a Page B

b

Segment F Segment G

Page A
a Page B

b

Segment F

Segment G

M1 :
(Cache)

M2 :
(Main memory)

M3 :
(Disk Storage)

M4 : Magnetic Tape Unit
(Backup storage)

1. Access by word (4 Bytes)
from cache block of 32 bytes,
such as block a

2. Access by block (32 Bytes)
from a memory page of 32 block
or 1 Kbytes, such as
block b from page B

3. Access by page (1 Kbytes) from a
file consisting of many pages, such
as page A and page B in segment F

4. Segment transfer with different
number of pages

 Write-through
 As soon as a data item in Mi is modified, immediate update of the corresponding data

item(s) in Mi+1, Mi+2, … Mn is required. This is the most aggressive (and expensive)
strategy.

 Write-back
 The update of the data item in Mi+1 corresponding to a modified item in Mi is not updated

until it (or the block/page/etc. in Mi that contains it) is replaced or removed. This is the
most efficient approach, but cannot be used (without modification) when multiple
processors share Mi+1, …, Mn.

 In most programs, memory references are assumed to occur in
patterns that are strongly related (statistically) to each of the
following:
 Temporal locality – if location M is referenced at time t, then it (location M) will be

referenced again at some time t+t.
 Spatial locality – if location M is referenced at time t, then another location Mm

will be referenced at time t+t.
 Sequential locality – if location M is referenced at time t, then locations M+1, M+2,

… will be referenced at time t+t, t+t’, etc.

 In each of these patterns, both m and t are “small.”
 Hennessy&Patterson suggest that 90 percent of the execution time in

most programs is spent executing only 10 percent of the code.

 The set of addresses (bytes, pages, etc.) referenced by a program during the
interval from t to t+, where  is called the working set parameter, changes slowly.

 This set of addresses, called the working set, should be present in the higher levels
of M if a program is to execute efficiently (that is, without requiring numerous
movements of data items from lower levels of M). This is called the working set
principle.

 When a needed item (instruction or data) is found in the level of the memory
hierarchy being examined, it is called a hit. Otherwise (when it is not found), it is
called a miss (and the item must be obtained from a lower level in the hierarchy).

 The hit ratio, h, for Mi is the probability (between 0 and 1) that a needed data item
is found in level memory Mi.

 The miss ratio is obviously just 1-hi.

 We assume h0 = 0 and hn = 1.
 CPU access always M1 first and access to the outermost memory Mn is always hit.

 The access frequency fi to level Mi is
fi = (1-h1)  (1-h2)  …  hi.

 Note that f1 = h1, and





n

i
if

1

1

 There are different penalties associated with misses at
different levels in the memory hierarcy.
 A cache miss is typically 2 to 4 times as expensive as a cache hit

(assuming success at the next level).
 A page fault (miss) is 3 to 4 magnitudes as costly as a page hit.

 The effective access time of a memory hierarchy can be
expressed as

1

1 1 1 2 2 1 2 1(1) (1)(1) (1)

n

eff i i
i

n n n

T f t

h t h h t h h h h t




 

       


 

The first few terms in this expression dominate, but the
effective access time is still dependent on program behavior
and memory design choices.

 The main memory is considered the physical memory in which multiple running
programs may reside.
 However, the limited-size physical memory cannot load in all programs fully and

simultaneously.

 The virtual memory concept was introduced to alleviate this problem.
 The idea is to expand the use of the physical memory among many programs with the help of

an auxiliary (backup) memory such as disk arrays.

 Only active programs or portions of them become residents of the physical memory at
one time.
 Active portions of programs can be loaded in and out from disk to physical memory

dynamically under the coordination of the operating system.

 To the users, virtual memory provides almost unbounded memory space to work with.
Without virtual memory, it would have been impossible to develop the
multiprogrammed cr time-sharing computer systems that are in use today.

 The mapping from virtual to physical addresses can be formally
defined as follows:

if has been allocated to store
,

the data identified by virtual address

if data missing in
t

m M
m

f v m

v is M


 


The mapping returns a physical address if a
memory hit occurs. If there is a memory miss, the
referenced item has not yet been brought into
primary memory.

a)Private virtual memory b)Shared virtual memory

 In this scheme, each processor has a separate virtual address space, but all
processors share the same physical address space.

 Example
 VAX/11 and in most UNIX systems

 Advantages:
 Small processor address space
 Protection on a per-page or per-process basis
 Private memory maps, which require no locking

 Disadvantages
 The synonym problem – different virtual addresses in different/same virtual spaces

point to the same physical page
 The same virtual address in different virtual spaces may point to different pages in

physical memory

 All processors share a single shared virtual address space, with each processor being
given a portion of it.

 Some of the virtual addresses can be shared by multiple processors.
 Example

 IBM801, RT, RP3, System 38, the HP Spectrum, the Stanford Dash, MIT Alewife, Tera, etc

 Advantages:
 All addresses are unique
 Synonyms are not allowed

 Disadvantages
 Processors must be capable of generating large virtual addresses (usually > 32 bits)
 Since the page table is shared, mutual exclusion must be used to guarantee atomic updates
 Segmentation must be used to confine each process to its own address space
 The address translation process is slower than with private (per processor) virtual memory

 Both the virtual address space and the physical address space are divided into
fixed-length pieces.
 In the virtual address space these pieces are called pages.
 In the physical address space they are called page frames.

 The purpose of memory allocation is to allocate pages of virtual memory using the
page frames of physical memory.

 [Virtual to physical] address translation requires use of a translation
map.
 The virtual address can be used with a hash function to locate the translation

map (which is stored in the cache, an associative memory, or in main memory).
 The translation map is comprised of a translation lookaside buffer, or TLB

(usually in associative memory) and a page table (or tables). The virtual address
is first sought in the TLB, and if that search succeeds, not further translation is
necessary. Otherwise, the page table(s) must be referenced to obtain the
translation result.

 If the virtual address cannot be translated to a physical address because the
required page is not present in primary memory, a page fault is reported.

 A large virtual address space demands either large PTs or multilevel direct paging
which will slow down the address translation process and thus lower the performance.

 Besides direct mapping, address translation maps can also be implemented with
inverted mapping (Fig.4.21c).
 An inverted page table is created for each page frame that has been allocated to users. Any

virtual page number can be paired with a given physical page number.
 Inverted page tables are accessed either by an associative search or by the use of a hashing

function.

 Given a virtual address to be translated, the hardware searches the inverted PT for that
address and, if it is found, uses the table index of the matching entry as the address of
the desired page frame.
 The size of an inverted PT is governed by the size of the physical space, while that of traditional

PTs is determined by the size of the virtual space.
 Because of limited physical space, no multiple levels are needed for the inverted page table.

