
Module - 1

Application Layer

Application Layer 1-1



Application Layer 1-2

1.1 principles of 
network applications

1.2 Web and HTTP
1.3 FTP 
1.4 electronic mail

 SMTP, POP3, 
IMAP

1.5 DNS

1.6 P2P applications
1.7 socket 

programming with 
UDP and TCP



Application Layer 1-3

Creating a network app
write programs that:
 run on (different) end 

systems
 communicate over 

network
 e.g., web server software 

communicates with 
browser software

no need to write software 
for network-core devices

 network-core devices do 
not run user applications 

 applications on end 
systems  allows for rapid 
app development, 
propagation

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical



Application Layer 1-4

Application architectures
possible structure of applications:

 client-server architecture

 peer-to-peer (P2P) architecture

 BitTorrent is a protocol that enables 
 Fast downloading of large files using minimum  

internet b/w
 Maximize transfer speed by gathering pieces of 

the file you want and downloading these pieces 
simultaneously from people who already have 
them  



Application Layer 1-5

Client-server architecture
server: 
 always-on host
 permanent IP address
 data centers for scaling

clients:
 communicate with server
 may be intermittently 

connected
 may have dynamic IP 

addresses
 do not communicate 

directly with each other

client/server



Application Layer 1-6

P2P architecture
 no always-on server
 arbitrary end systems 

directly communicate
 peers request service 

from other peers, 
provide service in return 
to other peers
 self scalability – new 

peers bring new 
service capacity, as 
well as new service 
demands

 peers are intermittently 
connected and change IP 
addresses
 complex management

peer-peer



Application Layer 1-7



Application Layer 1-8

Processes communicating

process: program 
running within a host

 within same host, two 
processes communicate 
using  inter-process 
communication (defined 
by OS)

 processes in different 
hosts communicate by 
exchanging messages

client process: process 
that initiates 
communication

server process: process 
that waits to be contacted

clients, servers



Application Layer 1-9

Sockets
 process sends/receives messages to/from its socket
 socket analogous to door

 sending process shoves message out door
 sending process relies on transport infrastructure 

on other side of door to deliver message to socket 
at receiving process

Internet

controlled
by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket



Application Layer 1-10

Addressing processes

 to receive messages, process  must have identifier
 host device has unique 32-bit IP address

 identifier includes both IP address and port numbers
associated with process on host.

 example port numbers:
 HTTP server: 80
 mail server: 25

 to send HTTP message to gaia.cs.umass.edu web 
server:
 IP address: 128.119.245.12
 port number: 80



Application Layer 1-11

Transport services available to application .

Reliable Data Transfer 
 some apps (e.g., file 

transfer, web transactions) 
require 100% reliable data 
transfer

 other apps (e.g., audio) can 
tolerate some loss

timing
 some apps (e.g., 

Internet telephony, 
interactive games) 
require low delay to be 
“effective”

throughput
 some apps (e.g., 

multimedia) require 
minimum amount of 
throughput to be 
“effective”

 other apps (“elastic 
apps”) make use of 
whatever throughput 
they get 

security
 encryption, data 

integrity, …



Application Layer 1-12

Some network apps
 e-mail
 web
 text messaging
 P2P file sharing
 multi-user network 

games
 streaming stored video 

(YouTube, Hulu, 
Netflix) 

 voice over IP (e.g., 
Skype)

 real-time video 
conferencing

 social networking
 search
 …
 …



Application Layer 1-13

Transport service requirements: common apps

application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games

text messaging

data loss

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

throughput

elastic
elastic
elastic
audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above 
few kbps up
elastic

time sensitive

no
no
no
yes, 100’s 
msec

yes, few secs
yes, 100’s 
msec
yes and no



Application Layer 1-14

Transport services provided by the Internet

TCP service:
 reliable transport

 flow control

 congestion control

 connection-oriented

UDP service:
 unreliable data transfer

between sending and 
receiving process

 does not provide:
reliability, flow control, 
congestion control, 
timing, throughput 
guarantee, security, or 
connection setup, 



Application Layer 1-15

Internet apps:  application, transport protocols

application

e-mail
remote terminal access

Web 
file transfer

streaming multimedia

Internet telephony

application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]
HTTP (e.g., YouTube), 
RTP [RFC 1889]
SIP, RTP, proprietary
(e.g., Skype)

underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

TCP or UDP



Application-Layer Protocols

Application Layer 1-16

 defines:

• types of messages exchanged

• syntax of the various message types

• semantics of the fields

• Rules



Application Layer 1-17

App-layer protocol defines

 types of messages 

exchanged,

 e.g., request, response 

 message syntax:

 what fields in messages & 

how fields are described.

 message semantics

 meaning of 

information in 

fields

 rules for when and how 

processes send & 

respond to messages



Application Layer 1-18

Web and HTTP
 What is web and HTTP? 
 Where HTTP is implemented? 

 Terminology
 A Web page



Application Layer 2-19



Application Layer 1-20

Web and HTTP

 web page consists of objects
 object can be HTML file, JPEG image, Java 

applet, audio file,…
 web page consists of base HTML-file which 

includes several referenced objects
 each object is addressable by a URL, e.g.,

www.someschool.edu/someDept/pic.gif

host name path name



Application Layer 1-21

HTTP overview

HTTP: hypertext 
transfer protocol

 Web’s application layer 
protocol

 client/server model
 client: browser that 

requests, receives, 
(using HTTP 
protocol) and 
“displays” Web 
objects 

 server: Web server 
sends (using HTTP 
protocol) objects in 
response to requests

PC running
Firefox browser

server 
running

Apache Web
server

iphone running
Safari browser



Application Layer 1-22

HTTP overview (continued)
uses TCP:
 client initiates TCP 

connection (creates 
socket) to server,  port 
80

 server accepts TCP 
connection from client

 HTTP messages 
(application-layer 
protocol messages) 
exchanged between 
browser (HTTP client) 
and Web server (HTTP 
server)

 TCP connection closed

HTTP is 
“stateless”

 server maintains 
no information 
about past client 
requests



Application Layer 1-23

HTTP connections
non-persistent HTTP
 at most one object 

sent over TCP 
connection
 connection then 

closed
 downloading 

multiple objects 
required multiple 
connections

persistent HTTP
 multiple objects 

can be sent over 
single TCP 
connection between 
client, server



Application Layer 1-24

Non-persistent HTTP
suppose user enters URL:

1a. HTTP client initiates TCP 
connection to HTTP server 
(process) at 
www.someSchool.edu on port 
80

2. HTTP client sends HTTP 
request message
(containing URL) into TCP 
connection socket. Message 
indicates that client wants 
object 
someDepartment/home.ind
ex

1b. HTTP server at host 
www.someSchool.edu 
waiting for TCP connection 
at port 80.  “accepts”
connection, notifying 
client

3. HTTP server receives 
request message, forms 
response message
containing requested 
object, and sends message 
into its sockettime

(contains text, 
references to 10 

jpeg images)
www.someSchool.edu/someDepartment/home.index



Application Layer 1-25

Non-persistent HTTP (cont.)

5. HTTP client receives response 
message containing html file, 
displays html.  Parsing html 
file, finds 10 referenced jpeg  
objects

6. Steps 1-5 repeated for 
each of 10 jpeg objects

4. HTTP server closes TCP 
connection. 

time



Application Layer 1-26

Non-persistent HTTP: response time

RTT (definition): time for a 
small packet to travel from 
client to server and back

HTTP response time:
 one RTT to initiate TCP 

connection
 one RTT for HTTP request 

and first few bytes of HTTP 
response to return

 file transmission time
 non-persistent HTTP 

response time =   
2RTT+ file transmission  
time

time to 
transmit 
file

initiate TCP
connection

RTT

request
file

RTT

file
received

time time



Application Layer 1-27

Persistent HTTP

non-persistent HTTP 
issues:

 requires 2 RTTs per 
object

 OS overhead for each
TCP connection

 browsers often open 
parallel TCP 
connections to fetch 
referenced objects

persistent  HTTP:
 server leaves connection 

open after sending 
response

 subsequent HTTP 
messages  between same 
client/server sent over 
open connection

 client sends requests as 
soon as it encounters a 
referenced object

 as little as one RTT for 
all the referenced 
objects



HTTP Message Format
 2 types of message formats

 Request Message

 Response Message

Application Layer 1-28



Application Layer 1-29

HTTP request message
ASCII (human-readable format)
Example:

www.someschool.edu

Line 1:- request line

3 fields :- method field, URL field & HTTP version

Line 2 to 5 :- header lines 



Application Layer 1-30

HTTP request message: general format

request
line

header
lines

body

method sp sp cr lfversionURL

cr lfvalueheader field name

cr lfvalueheader field name

~~ ~~

cr lf

entity body~~ ~~



Application Layer 1-31

GET The GET method is used to retrieve information from the given server 
using a given URI. Requests using GET should only retrieve data and should 
have no other effect on the data.

2HEAD Same as GET, but transfers the status line and header section only.

3POSTA POST request is used to send data to the server, for example,
customer information, file upload, etc. using HTML forms.

4PUT Replaces all current representations of the target resource with the
uploaded content.

5DELETE Removes all current representations of the target resource given by
a URI



Application Layer 1-32

Method types
HTTP/1.0:
 GET
 POST
 HEAD

 asks server to leave 
requested object 
out of response

 Requests that only 
header fields(no 
body) be returned 
in the response.

HTTP/1.1:
 GET, POST, HEAD
 PUT

 uploads file in 
entity body to path 
specified in URL 
field

 DELETE
 deletes file 

specified in the 
URL field



Application Layer 1-33

Uploading form input
POST method:
 web page often includes 

form input
 input is uploaded to 

server in entity body



Application Layer 1-34

HTTP response message

1. HTTP/1.1 200 OK

2. Connection: close

3. Date: Tue, 09 Aug 2011 15:44:04 GMT

4. Server: Apache/2.2.3 (CentOS)

5. Last-Modified: Tue, 09 Aug 2011 15:11:03 GMT

6. Content-Length: 6821

7. Content-Type: text/html

(data data data data data ...)

Example:

3 sectoins

Line 1:status line

Line2 to 7: header lines

Then the entity body

3 -protocol version field ,status code & 
corresponding status message



Application Layer 1-35



Application Layer 1-36

HTTP response status codes

200 OK
 request succeeded, requested object later in this msg

301 Moved Permanently
 requested object moved, new location specified later in this 

message (Location:)
400 Bad Request

 request msg not understood by server
404 Not Found

 requested document not found on this server
505 HTTP Version Not Supported

 status code appears in 1st line in server-to-
client response message.

 some sample codes:



Application Layer 1-37

User-server Interaction: cookies

many Web sites use 
cookies

four components:
1) cookie header line 

of HTTP response
message

2) cookie header line 
in next HTTP 
request message

3) cookie file kept on 
user’s host, 
managed by user’s 
browser

4) back-end database 
at Web site

example:
 Susan always access 

Internet from PC
 visits specific e-

commerce site for first 
time

 when initial HTTP 
requests arrives at site, 
site creates: 
 unique ID
 entry in backend 

database for ID



Application Layer 1-38

Cookies: keeping “state” (cont.)

client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734
usual http request msg Amazon server

creates ID
1678 for user create

entry

usual http response 
set-cookie: 1678

ebay 8734
amazon 1678

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734
amazon 1678

backend
database



Application Layer 1-39

Cookies (continued)
what cookies can be 

used for:
 authorization

 shopping carts

 recommendations

 user session state 

(Web e-mail)

cookies and privacy:
 cookies permit sites to 

learn a lot about you
 you may supply name 

and e-mail to sites

aside



Application Layer 1-40

Web caches (proxy server)

 user sets browser: Web 
accesses via  cache

 browser sends all HTTP 
requests to cache
 object in cache: 

cache returns object 
 else cache requests 

object from origin 
server, then returns 
object to client

goal: satisfy client request without involving origin 
server

client

proxy
server

client origin 
server

origin 
server



Application Layer1-41

More about Web caching

 cache acts as both 
client and server
 server for original 

requesting client
 client to origin server

 typically cache is 
installed by ISP 
(university, 
company, 
residential ISP)

why Web caching?
 reduce response time 

for client request

 reduce traffic on an 
institution’s access 
link



Application Layer 1-42

Conditional GET 

 Goal: don’t send object if 
cache has up-to-date 
cached version
 no object transmission delay
 lower link utilization

 cache: specify date of 
cached copy in HTTP 
request
If-modified-since: 
<date>

 server: response contains 
no object if cached copy 
is up-to-date: 
HTTP/1.0 304 Not 
Modified

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 

304 Not Modified

object 
not 

modified
before
<date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK

<data>

object 
modified

after 
<date>

client server



Application Layer 1-43

Conditional GET 
 caching can reduce user-perceived response times,

 new problem—
• The object housed in the Web server may have been modified

since the copy was cached at the client.

 HTTP has a mechanism that allows a cache to
verify that its objects are up to date. This
mechanism is called the conditional GET.

 An HTTP request message is a so-called 
conditional GET message if

 (1) the request message uses the GET method 
 (2) the request message includes an If-Modified-

Since: header line.



Example: 

 GET /fruit/kiwi.gif HTTP/1.1
 Host: www.exotiquecuisine.com

 HTTP/1.1 200 OK
 Date: Sat, 8 Oct 2011 15:39:29
 Server: Apache/1.3.0 (Unix)
 Last-Modified: Wed, 7 Sep 2011 09:23:24
 Content-Type: image/gif
 (data data data data data ...)

Application Layer 1-44

On the behalf of a requesting browser, a proxy cache sends a request

message to a Web server:

Web server sends a response message with the requested object to the

cache:

The cache forwards the object to the requesting browser but also

caches the object locally.



Cont..

Application Layer 1-45

 GET /fruit/kiwi.gif HTTP/1.1
 Host: www.exotiquecuisine.com
 If-modified-since: Wed, 7 Sep 2011 09:23:24

 HTTP/1.1 304 Not Modified

 Date: Sat, 15 Oct 2011 15:39:29

 Server: Apache/1.3.0 (Unix)

 (empty entity body)

1 week later:

The cache performs an up-to-date check by issuing a conditional

GET. Specifically, the cache sends:

Web server sends a response message to the cache:



Application Layer 1-46

1.3 FTP: the file transfer protocol
file transfer

FTP
server

FTP
user

interface

FTP
client

local file
system

remote file
system

user 
at host

 transfer file to/from remote host
 client/server model

 client: side that initiates transfer (either 
to/from remote)

 server: remote host
 ftp server: port 21



Application Layer 1-47

FTP: separate control, data connections

 FTP client contacts FTP
server at port 21, using TCP

 client authorized over control
connection

 client browses remote
directory, sends commands
over control connection

 after transferring one file,
server closes data connection

FTP
client

FTP
server

TCP control connection,
server port 21

TCP data connection,
server port 20

 server opens another TCP 
data connection to 
transfer another file

 FTP server maintains 
“state”: current 
directory, earlier 
authentication



Application Layer 1-48

FTP commands, responses
sample commands:
 sent as ASCII text 

over control channel
 USER username
 PASS password

 LIST return list of file 
in current directory

 RETR filename
retrieves (gets) file

 STOR filename stores 
(puts) file onto remote 
host

sample return codes
 status code and phrase 

(as in HTTP)
 331 Username OK, 
password required

 125 data 
connection 
already open; 
transfer starting

 425 Can’t open 
data connection

 452 Error writing 
file



Application Layer 1-49

Difference between HTTP & FTP
1. FTP uses two parallel

TCP connections to
transfer a file, a control
connection and a data
connection.

2. FTP is said to send its
control information out-
of-band.

3. Port number: 20 and 21

4. FTP server maintains
state about the user.

1. HTTP sends request and
response header lines into
the same TCP connection
that carries the transferred
file itself.

2. HTTP is said to send its
control information in-
band.

3. Port number: 80

4. HTTP stateless protocol



Application Layer 1-50

1.4 Electronic mail
Three major components:
 user agents 
 mail servers 
 simple mail transfer 

protocol: SMTP

User Agent
 “mail reader”
 composing, editing, reading 

mail messages

 outgoing, incoming messages 
stored on server

user mailbox

outgoing 
message queue

mail
server

mail
server

mail
server

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

user
agent



Application Layer 1-51

Electronic mail: mail servers
mail servers:
 mailbox contains incoming 

messages for user
 message queue of outgoing 

(to be sent) mail messages
 SMTP protocol between 

mail servers to send email 
messages
 client: sending mail 

server
 “server”: receiving mail 

server

mail
server

mail
server

mail
server

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

user
agent



Application Layer 1-52

Electronic Mail: SMTP 
 uses TCP to reliably transfer email 

message from client to server, port 25
 direct transfer: sending server to 

receiving server
 three phases of transfer

 handshaking (greeting)
 transfer of messages
 closure

 command/response interaction (like HTTP, 
FTP)
 commands: ASCII text
 response: status code and phrase

 messages must be in 7-bit ASCII



Application Layer 2-53



Application Layer 1-54

user
agent

Scenario: Alice sends message to Bob
1) Alice uses UA to 

compose message “to”
bob@someschool.edu

2) Alice’s UA sends 
message to her mail 
server; message placed 
in message queue

3) client side of SMTP 
opens TCP connection 
with Bob’s mail server

4) SMTP client sends 
Alice’s message over 
the TCP connection

5) Bob’s mail server places 
the message in Bob’s 
mailbox

6) Bob invokes his user 
agent to read message

mail
server

mail
server

1

2 3 4

5

6

Alice’s mail server Bob’s mail server

user
agent



Application Layer 1-55

SMTP
 SMTP uses persistent connections
 message transfer agent

comparison with HTTP:

1. HTTP: pull protocol

2. No restrictions

3. each object encapsulated in
its own response message.

4. Port no 80

1. SMTP: push protocol

2. SMTP requires message 
(header & body) to be in 
7-bit ASCII

3. Internet mail places all of 
the message’s objects 
into one message.

4. Port no 25



Application Layer 1-56

Mail message format

SMTP: protocol for 
exchanging email msgs

standard for text 
message format:

 header lines, e.g.,
 To:
 From:
 Subject:

 Body: the “message”
 ASCII characters only

header

body

blank
line



Application Layer 1-57

Mail access protocols

 SMTP: delivery/storage to receiver’s server
 mail access protocol: retrieval from server

 POP: Post Office Protocol: authorization, 
download 

 IMAP: Internet Mail Access Protocol: more 
features, including manipulation of stored msgs
on server

 HTTP: gmail, Hotmail, Yahoo! Mail, etc.

sender’s mail 
server

SMTP SMTP
mail access

protocol

receiver’s mail 
server

(e.g., POP, 
IMAP)

user
agent

user
agent



Application Layer 1-58

POP3 protocol

• POP3 is an extremely simple mail access protocol.

• which is short and quite readable.

• functionality is rather limited.

• POP3 begins when the user agent (the client) opens a TCP

connection to the mail server (the server) on port 110.

POP3 progresses through three phases:

1. authorization,

2. transaction

3. update.



Application Layer 1-59

POP3 protocol

authorization phase
 client commands: 

 user: declare username
 pass: password

 server responses
 +OK
 -ERR

transaction phase,
client:

 list: list message numbers
 retr: retrieve message by 

number
 dele: delete
 quit

C: list 
S: 1 498 
S: 2 912 
S: . 
C: retr 1 
S: <message 1 contents>
S: . 
C: dele 1 
C: retr 2 
S: <message 1 contents>
S: . 
C: dele 2 
C: quit 
S: +OK POP3 server signing off

S: +OK POP3 server ready 
C: user bob 
S: +OK 
C: pass hungry 
S: +OK user successfully logged on



Application Layer 1-60

POP3 (more) and IMAP
more about POP3
 previous example uses 

POP3 “download and 
delete” mode
 Bob cannot re-read 

e-mail if he changes 
client

 POP3 “download-and-
keep”: copies of 
messages on different 
clients

 POP3 is stateless across 
sessions

IMAP
 keeps all messages in 

one place: at server
 allows user to organize 

messages in folders
 Port no 143
 keeps user state 

across sessions:
 names of folders 

and mappings 
between message 
IDs and folder 
name



Application Layer 2-61



Application Layer 2-62



Application Layer 2-63



Application Layer 2-64



Application Layer 1-62

1 .5 DNS: domain name system
people: many identifiers:

 SSN, name, passport #

Internet hosts, routers:
• Identified by the host name and IP address (121.7.106.83)

 IP address (32 bit) - used for addressing 
datagrams

 “name”, e.g., www.yahoo.com - used by humans

Q: how to map between IP address and name, and vice 
versa ?



 The DNS is

 (1) a distributed database implemented in a
hierarchy of DNS servers, and

 (2) an application-layer protocol that allows
hosts to query the distributed database.

 The DNS protocol runs over UDP

 DNS is commonly employed by other
application-layer protocols
 —including HTTP, SMTP, and FTP

to translate user-supplied hostnames to IP
addresses

port 53.
Application Layer 1-66



1.The user machine runs the client side of the DNS
application.

2. The browser extracts the hostname, www.someschool.edu,
from the URL and passes the hostname to the client side of
the DNS application.

3.The DNS client sends a query containing the hostname to a
DNS server.

4. The DNS client eventually receives a reply, which includes
the IP address for the hostname.

5. Once the browser receives the IP address from DNS, it
can initiate a TCP connection to the HTTP server process
located at port 80 at that IP address.

Application Layer 1-67



Application Layer 1-68

DNS: services, structure 
why not centralize DNS?
 single point of failure
 traffic volume
 distant centralized 

database
 maintenance

DNS services
 hostname to IP 

address translation

 host aliasing
 canonical, alias names

 mail server aliasing:
 highly desirable that e-

mail addresses be 
mnemonic

 load distribution
 replicated Web 

servers

A: doesn’t scale!



Application Layer 1-69

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS servers

yahoo.com
DNS servers

amazon.com
DNS servers

pbs.org
DNS servers

DNS: a distributed, hierarchical database

… …

 Classes of DNS server
 Root DNS server

 Top-level domain DNS server

 Authoritative DNS server



Application Layer 1-70

DNS: root name servers
 In the Internet there are 13 root DNS servers (labeled A through

M), most of which are located in North America.

13 root name 
“servers”
worldwide

a. Verisign, Los Angeles CA
(5 other sites)

b. USC-ISI Marina del Rey, CA
l. ICANN Los Angeles, CA

(41 other sites)

e. NASA Mt View, CA
f. Internet Software C.
Palo Alto, CA (and 48 other   
sites)

i. Netnod, Stockholm (37 other sites)

k. RIPE London (17 other sites)

m. WIDE Tokyo
(5 other sites)

c. Cogent, Herndon, VA (5 other sites)
d. U Maryland College Park, MD
h. ARL Aberdeen, MD
j. Verisign, Dulles VA (69 other sites )

g. US DoD Columbus, 
OH (5 other sites)



Application Layer 1-71

TLD, authoritative servers
top-level domain (TLD) servers:

 responsible for com, org, net, edu, aero, jobs, museums,
and all top-level country domains, e.g.: uk, fr, ca, jp

 Network Solutions maintains servers for .com TLD
 Edu cause for .edu TLD

authoritative DNS servers:

 organization’s own DNS server(s), providing authoritative
hostname to IP mappings for organization’s named hosts

 can be maintained by organization or service provider



Application Layer 2-72



Application Layer 1-73



Application Layer 1-74

Local DNS server
 does not strictly belong to hierarchy

 each ISP (residential ISP, company, university) 
has one
 also called “default name server”

 when host makes DNS query, query is sent to its 
local DNS server
 has local cache of recent name-to-address translation 

pairs (but may be out of date!)
 acts as proxy, forwards query into hierarchy



Application Layer 1-75

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server
dns.cs.umass.edu

7
8

TLD DNS server

DNS name 
resolution example
 host at cis.poly.edu 

wants IP address for 
gaia.cs.umass.edu

Iterative query:
 contacted server replies 

with name of server to 
contact

 “I don’t know this 
name, but ask this 
server”



Application Layer 1-76

45

6

3

recursive query:
 puts burden of name 

resolution on 
contacted name 
server

 heavy load at upper 
levels of hierarchy?

 DNS caching. 
requesting host

cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
7

authoritative DNS server
dns.cs.umass.edu

8

DNS name 
resolution example

TLD DNS 
server



Application Layer 1-77

DNS records
DNS: distributed db storing resource records (RR)

type=NS
 name is domain (e.g., 

foo.com)
 value is hostname of 

authoritative name server 
for this domain

RR format: (name, value, type, ttl)

type=A
 name is hostname

 value is IP address

type=CNAME
 name is alias name for some 

“canonical” (the real) name

 www.ibm.com is really
servereast.backup2.ibm.com

 value is canonical name

type=MX
 name: is alias name for some 

“canonical” (the real) name

 value is canonical name



Application Layer 1-78

DNS protocol, messages
 query and reply messages, both with same 

message format

msg header
 identification: 16 bit # for 

query, reply to query

 flags:

 query or reply

 recursion desired 

 recursion available

 reply is authoritative

identification flags

# questions

questions (variable # of questions)

# additional RRs# authority RRs

# answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

2 bytes 2 bytes



Application Layer 2-79



Application Layer 1-80

name, type fields
for a query

RRs in response
to query

records for
authoritative servers

additional “helpful”
info that may be used

identification flags

# questions

questions (variable # of questions)

# additional RRs# authority RRs

# answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

DNS protocol, messages

2 bytes 2 bytes



Inserting Records into the DNS Database

 new start up company called 

Network Utopia

 register the domain name 

networkutopia.com

 need to provide the registrar 

with the names and IP addresses 

of your primary and secondary 

authoritative DNS servers

 Suppose the names and IP 
addresses are 

 dns1.networkutopia.com, 
dns2.networkutopia.com,

 212.212.212.1, and 
212.212.212.2

Application Layer 1-81



 the registrar would insert the following two resource 
records into the DNS system:

 (networkutopia.com,dns1.networkutopia.com, NS)

 (dns1.networkutopia.com, 212.212.212.1, A)

Application Layer 1-82



Application Layer 1-83

1.6 P2P applications
 no always-on server
 arbitrary end systems directly 

communicate
 peers are intermittently 

connected and change IP 
addresses

 Applications:
 BitTorrent
 DHT

examples:
 file distribution (BitTorrent)
 Streaming (KanKan)
 VoIP (Skype) 



Application Layer 1-84

File distribution: client-server vs P2P

Question: how much time to distribute file (size F) from 
one server to N  peers?
 peer upload/download capacity is limited resource

us

uN

dN

server

network (with abundant
bandwidth)

file, size F

us: server upload 
capacity

ui: peer i upload 
capacity

di: peer i download 
capacityu2 d2

u1 d1

di

ui



Application Layer 1-85

File distribution time: client-server
 server transmission: must

sequentially send (upload) N file
copies:
 time to send one copy: F/us 

 time to send N copies: NF/us

increases linearly in N

time to  distribute F 
to N clients using 

client-server approach
Dc-s > max{NF/us,,F/dmin}

 client: each client must download 
file copy
 dmin = min client download rate
 min client download time: F/dmin

us

network

di

ui

F



Application Layer 1-86

File distribution time: P2P
 server transmission: must

upload at least one copy
 time to send one copy: F/us 

time to  distribute F 
to N clients using 

P2P approach

us

network

di

ui

F

DP2P > max{F/us,,F/dmin,,NF/(us + Sui)}

 client: each client must 
download file copy
 min client download time: F/dmin

 clients: as aggregate must download NF bits
 max upload rate (limting max download rate) is us + Sui

… but so does this, as each peer brings service capacity
increases linearly in N …



Application Layer 1-87

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
u

m
 D

is
tr

ib
u

tio
n 

T
im

e P2P

Client-Server

Client-server vs. P2P: example



Application Layer 1-88

P2P file distribution: BitTorrent

tracker: tracks peers 
participating in torrent

torrent: group of peers 
exchanging  chunks of 
a file

Alice arrives  …

 file divided into 256Kb chunks

 peers in torrent send/receive file chunks

… obtains list
of peers from tracker
… and begins exchanging 
file chunks with peers in torrent



Application Layer 1-89

 peer joining torrent: 
 has no chunks, but will 

accumulate them over time 
from other peers

 registers with tracker to get list 
of peers, connects to subset of 
peers (“neighbors”)

P2P file distribution: BitTorrent 

 while downloading, peer uploads chunks to other peers
 peers may come and go
 once peer has entire file, it may (selfishly) leave or 

(altruistically) remain in torrent



Application Layer 1-90

BitTorrent: requesting, sending file chunks

requesting chunks:
 at any given time, different peers have different subsets of 

file chunks
 periodically, Alice asks each peer for list of chunks that they 

have
 Alice requests missing chunks from peers, rarest first

sending chunks:
 Alice sends chunks to those four peers currently sending her

chunks at highest rate



Key Value
John Washington 132-54-3570
Diana Louise Jones 761-55-3791
Xiaoming Liu 385-41-0902
Rakesh Gopal 441-89-1956
Linda Cohen 217-66-5609
……. ………
Lisa Kobayashi 177-23-0199

Simple database with(key, value) pairs: 

• key: human name; value: social security #

DHT: Simple Database

• key: movie title; value: IP address



Original Key Key Value
John Washington 8962458 132-54-3570
Diana Louise Jones 7800356 761-55-3791
Xiaoming Liu 1567109 385-41-0902
Rakesh Gopal 2360012 441-89-1956
Linda Cohen 5430938 217-66-5609
……. ………
Lisa Kobayashi 9290124 177-23-0199

• More convenient to store and search on 
numerical representation of key

• key = hash(original key)

Hash Table



 Distribute (key, value) pairs over millions of peers
 pairs are evenly distributed over peers

 Any peer can query database with a key
 database returns value for the key
 To resolve query, small number of messages exchanged among 

peers

 Each peer only knows about a small number of other 
peers

 Robust to peers coming and going

Distributed Hash Table (DHT)



Assign key-value pairs to peers
 rule: assign key-value pair to the peer that has the 

closest ID.
 convention: closest is the immediate successor of 

the key.
 e.g., ID space {0,1,2,3,…,63}
 suppose 8 peers: 1,12,13,25,32,40,48,60

 If key = 51, then assigned to peer 60
 If key = 60, then assigned to peer 60
 If key = 61, then assigned to peer 1



1

12

13

25

32
40

48

60

Circular DHT
• each peer only aware of 

immediate successor and 
predecessor.

“overlay network”



1

12

13

25

32
40

48

60

What is the value
associated with key 53 ?

value

O(N) messages
on avgerage to resolve
query, when there
are N peers

Resolving a query



Circular DHT with shortcuts

• each peer keeps track of IP addresses of predecessor, 
successor, short cuts.

• reduced from 6 to 3 messages.

1

12

13

25

32
40

48

60

What is the value for
key 53value



Peer churn

example: peer 5 abruptly leaves

1

3

4

5

8
10

12

15

handling peer churn:
peers may come and go (churn)
each peer knows address of its 
two successors 
each peer periodically pings its 
two successors to check aliveness
if immediate successor leaves, 
choose next successor as new 
immediate successor



Peer churn

example: peer 5 abruptly leaves
peer 4 detects peer 5’s departure; makes 8 its immediate 
successor
 4 asks 8 who its immediate successor is; makes 8’s 
immediate successor its second successor.

1

3

4

8
10

12

15

handling peer churn:
peers may come and go (churn)
each peer knows address of its 
two successors 
each peer periodically pings its 
two successors to check aliveness
if immediate successor leaves, 
choose next successor as new 
immediate successor



Application Layer 1-100

Socket programming 

goal: learn how to build client/server applications that 
communicate using sockets

socket: door between application process and end-end-
transport protocol 

Internet

controlled
by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket



Application Layer 1-101

Socket programming 

Two socket types for two transport services:
 UDP: unreliable datagram
 TCP: reliable, byte stream-oriented 

Application Example:
1. Client reads a line of characters (data) from its 

keyboard and sends the data to the server.
2. The server receives the data and converts characters to 

uppercase.
3. The server sends the modified data to the client.
4. The client receives the modified data and displays the 

line on its screen.



Application Layer 1-102

Socket programming with UDP

UDP: no “connection” between client & server
 no handshaking before sending data
 sender explicitly attaches IP destination address and port # 

to each packet
 rcvr extracts sender IP address and port# from received 

packet

UDP: transmitted data may be lost or received out-of-
order

Application viewpoint:
 UDP provides unreliable transfer  of groups of bytes 

(“datagrams”) between client and server



Client/server socket interaction: UDP

close
clientSocket

read datagram from
clientSocket

create socket:
clientSocket =
socket(AF_INET,SOCK_DGRAM)

Create datagram with server IP and
port=x; send datagram via
clientSocket

create socket, port= x:
serverSocket =
socket(AF_INET,SOCK_DGRAM)

read datagram from
serverSocket

write reply to
serverSocket
specifying 
client address,
port number

Application  1-103

server (running on serverIP) client



Application Layer 1-104

Example app: UDP client

from socket import *

serverName = ‘hostname’

serverPort = 12000

clientSocket = socket(socket.AF_INET, 

socket.SOCK_DGRAM)

message = raw_input(’Input lowercase sentence:’)

clientSocket.sendto(message,(serverName, serverPort))

modifiedMessage, serverAddress = 

clientSocket.recvfrom(2048)

print modifiedMessage

clientSocket.close()

Python UDPClient
include Python’s socket 
library

create UDP socket for 
server

get user keyboard
input 

Attach server name, port to 
message; send into socket

print out received string 
and close socket

read reply characters from

socket into string



Application Layer 1-105

Example app: UDP server

from socket import *

serverPort = 12000

serverSocket = socket(AF_INET, SOCK_DGRAM)

serverSocket.bind(('', serverPort))

print “The server is ready to receive”

while 1:

message, clientAddress = serverSocket.recvfrom(2048)

modifiedMessage = message.upper()

serverSocket.sendto(modifiedMessage, clientAddress)

Python UDPServer

create UDP socket

bind socket to local port 
number 12000

loop forever

Read from UDP socket into 
message, getting client’s 
address (client IP and port)

send upper case string 
back to this client



Application Layer 1-106

Socket programming with TCP
client must contact server
 server process must first be 

running
 server must have created socket 

(door) that welcomes client’s 
contact

client contacts server by:
 Creating TCP socket, specifying 

IP address, port number of server 
process

 when client creates socket: client 
TCP establishes connection to 
server TCP

 when contacted by client, 
server TCP creates new 
socket for server process to 
communicate with that 
particular client
 allows server to talk with 

multiple clients
 source port numbers used 

to distinguish clients

TCP provides reliable, in-order
byte-stream transfer (“pipe”) 
between client and server

application viewpoint:



Application Layer 1-107

Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
serverSocket.accept()

create socket,
port=x, for incoming 
request:
serverSocket = socket()

create socket,
connect to hostid, port=x
clientSocket = socket()

server (running on hostid) client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP 
connection setup

close
connectionSocket

read reply from
clientSocket

close
clientSocket



Application Layer 1-108

Example  app: TCP client

from socket import *

serverName = ’servername’

serverPort = 12000

clientSocket = socket(AF_INET, SOCK_STREAM)

clientSocket.connect((serverName,serverPort))

sentence = raw_input(‘Input lowercase sentence:’)

clientSocket.send(sentence)

modifiedSentence = clientSocket.recv(1024)

print ‘From Server:’, modifiedSentence

clientSocket.close()

Python TCPClient

create TCP socket for 
server, remote port 12000

No need to attach server 
name, port 



Application Layer 1-109

Example app: TCP server

from socket import *

serverPort = 12000

serverSocket = socket(AF_INET,SOCK_STREAM)

serverSocket.bind((‘’,serverPort))

serverSocket.listen(1)

print ‘The server is ready to receive’

while 1:

connectionSocket, addr = serverSocket.accept()

sentence = connectionSocket.recv(1024)

capitalizedSentence = sentence.upper()

connectionSocket.send(capitalizedSentence)

connectionSocket.close()

Python TCPServer

create TCP welcoming

socket

server begins listening for  
incoming TCP requests

loop forever

server waits on accept()
for incoming requests, new 
socket created on return

read bytes from socket (but 
not address as in UDP)

close connection to this 
client (but not welcoming 
socket)


