
Chapter 2: Program and Network Properties

• Conditions of parallelism

• Program partitioning and scheduling

• Program flow mechanisms

• System interconnect architectures

EENG-630 - Chapter 2

EENG-630 - Chapter 2

Conditions of Parallelism

The exploitation of parallelism in computing requires
understanding the basic theory associated with it.
Progress is needed in several areas:

computation models for parallel computing

interprocessor communication in parallel architectures

integration of parallel systems into general environments

Data dependences

The ordering relationship between statements is indicated by the data

dependence.

• Flow dependence

• Anti dependence

• Output dependence

• I/O dependence

• Unknown dependence

EENG-630 - Chapter 2

Data Dependence - 1

• Flow dependence: S1 precedes S2, and at least one output of S1 is

input to S2.

• Antidependence: S1 precedes S2, and the output of S2 overlaps the

input to S1.

• Output dependence: S1 and S2 write to the same output variable.

• I/O dependence: two I/O statements (read/write) reference the

same variable, and/or the same file.

Data Dependence - 2

• Unknown dependence:

o The subscript of a variable is itself subscripted.

o The subscript does not contain the loop index variable.

o A variable appears more than once with subscripts having different

coefficients of the loop variable (that is, different functions of the loop

variable).

o The subscript is nonlinear in the loop index variable.

• Parallel execution of program segments which do not have total data

independence can produce non-deterministic results.

Data dependence example

EENG-630 - Chapter 2

S1: Load R1, A
S2: Add R2, R1
S3: Move R1, R3
S4: Store B, R1

S1

S2 S4

S3

I/O dependence example

EENG-630 - Chapter 2

S1: Read (4), A(I)
S2: Rewind (4)
S3: Write (4), B(I)
S4: Rewind (4)

S1 S3I/O

Control dependence

• The order of execution of statements cannot be determined before

run time

o Conditional branches

o Successive operations of a looping procedure

EENG-630 - Chapter 2

Control dependence examples

Do 20 I = 1, N

A(I) = C(I)

IF(A(I) .LT. 0) A(I)=1

20 Continue

Do 10 I = 1, N

IF(A(I-1) .EQ. 0) A(I)=0

10 Continue

EENG-630 - Chapter 2

Resource dependence

• Concerned with the conflicts in using shared resources

o Integer units

o Floating-point units

o Registers

o Memory areas

o ALU

o Workplace storage

EENG-630 - Chapter 2

Bernstein’s conditions

• Set of conditions for two processes to execute in parallel

I1  O2 = Ø

I2  O1 = Ø

O1  O2 = Ø

EENG-630 - Chapter 2

Bernstein’s Conditions - 2

• In terms of data dependencies, Bernstein’s conditions imply that two

processes can execute in parallel if they are flow-independent,

antiindependent, and output-independent.

• The parallelism relation || is commutative (Pi || Pj implies Pj || Pi),

but not transitive (Pi || Pj and Pj || Pk does not imply Pi || Pk) .

Therefore, || is not an equivalence relation.

• Intersection of the input sets is allowed.

Utilizing Bernstein’s conditions

P1 : C = D x E

P2 : M = G + C

P3 : A = B + C

P4 : C = L + M

P5 : F = G / E

EENG-630 - Chapter 2

P1

P3

P2 P4

P5

Utilizing Bernstein’s conditions

Hardware parallelism

• A function of cost and performance tradeoffs

• Displays the resource utilization patterns of

simultaneously executable operations

• Denote the number of instruction issues per

machine cycle: k-issue processor

• A multiprocessor system with n k-issue processors

should be able to handle a maximum number of nk

threads of instructions simultaneously

EENG-630 - Chapter 2

Software parallelism

• Defined by the control and data dependence of programs

• A function of algorithm, programming style, and compiler

organization

• The program flow graph displays the patterns of simultaneously

executable operations

EENG-630 - Chapter 2

Mismatch between software and hardware parallelism - 1

L1 L2 L3 L4

X1 X2

+ -

A B

Maximum software
parallelism (L=load,
X/+/- = arithmetic).

Cycle 1

Cycle 2

Cycle 3

Mismatch between software and hardware
parallelism - 2

L1

L2

L4

L3X1

X2

+

-
A

B

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

Cycle 6

Cycle 7

Same problem, but
considering the
parallelism on a two-issue
superscalar processor.

Mismatch between software and hardware
parallelism - 3

L1

L2

S1

X1

+

L5

L3

L4

S2

X2

-

L6

BA

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

Cycle 6

Same problem,
with two single-
issue processors

= inserted for
synchronization

Software parallelism

• Control parallelism – allows two or more operations to be

performed concurrently

o Pipelining, multiple functional units

• Data parallelism – almost the same operation is performed over

many data elements by many processors concurrently

o Code is easier to write and debug

EENG-630 - Chapter 2

Types of Software Parallelism

• Control Parallelism – two or more operations can be performed
simultaneously. This can be detected by a compiler, or a
programmer can explicitly indicate control parallelism by using
special language constructs or dividing a program into multiple
processes.

• Data parallelism – multiple data elements have the same operations
applied to them at the same time. This offers the highest potential
for concurrency (in SIMD and MIMD modes). Synchronization in
SIMD machines handled by hardware.

Solving the Mismatch Problems

• Develop compilation support

• Redesign hardware for more efficient exploitation by compilers

• Use large register files and sustained instruction pipelining.

• Have the compiler fill the branch and load delay slots in code

generated for RISC processors.

The Role of Compilers

• Compilers used to exploit hardware features to improve
performance.

• Interaction between compiler and architecture design is a necessity
in modern computer development.

• It is not necessarily the case that more software parallelism will
improve performance in conventional scalar processors.

• The hardware and compiler should be designed at the same time.

Program Partitioning & Scheduling

• The size of the parts or pieces of a program that can be considered

for parallel execution can vary.

• The sizes are roughly classified using the term “granule size,” or

simply “granularity.”

• The simplest measure, for example, is the number of instructions in

a program part.

• Grain sizes are usually described as fine, medium or coarse,

depending on the level of parallelism involved.

Latency

• Latency is the time required for communication between different

subsystems in a computer.

• Memory latency, for example, is the time required by a processor to

access memory.

• Synchronization latency is the time required for two processes to

synchronize their execution.

• Computational granularity and communicatoin latency are closely

related.

Levels of Parallelism

Jobs or programs

Instructions
or statements

Non-recursive loops
or unfolded iterations

Procedures, subroutines,
tasks, or coroutines

Subprograms, job steps or
related parts of a program

Coarse grain

Medium grain

Fine grain

Increasing
communication

demand and
scheduling
overhead

Higher degree of
parallelism

Instruction Level Parallelism

• This fine-grained, or smallest granularity level typically involves less

than 20 instructions per grain. The number of candidates for

parallel execution varies from 2 to thousands, with about five

instructions or statements (on the average) being the average level

of parallelism.

• Advantages:

o There are usually many candidates for parallel execution

o Compilers can usually do a reasonable job of finding this parallelism

Loop-level Parallelism

• Typical loop has less than 500 instructions.

• If a loop operation is independent between iterations, it can be

handled by a pipeline, or by a SIMD machine.

• Most optimized program construct to execute on a parallel or vector

machine

• Some loops (e.g. recursive) are difficult to handle.

• Loop-level parallelism is still considered fine grain computation.

Procedure-level Parallelism

• Medium-sized grain; usually less than 2000 instructions.
• Detection of parallelism is more difficult than with smaller grains;

interprocedural dependence analysis is difficult and history-
sensitive.

• Communication requirement less than instruction-level
• SPMD (single procedure multiple data) is a special case
• Multitasking belongs to this level.

Subprogram-level Parallelism

• Job step level; grain typically has thousands of instructions;

medium- or coarse-grain level.

• Job steps can overlap across different jobs.

• Multiprograming conducted at this level

• No compilers available to exploit medium- or coarse-grain

parallelism at present.

Job or Program-Level Parallelism

• Corresponds to execution of essentially independent jobs or

programs on a parallel computer.

• This is practical for a machine with a small number of powerful

processors, but impractical for a machine with a large number of

simple processors (since each processor would take too long to

process a single job).

Communication Latency

• Balancing granularity and latency can yield better performance.
• Various latencies attributed to machine architecture, technology,

and communication patterns used.
• Latency imposes a limiting factor on machine scalability. Ex.

Memory latency increases as memory capacity increases, limiting
the amount of memory that can be used with a given tolerance for
communication latency.

Interprocessor Communication Latency

• Needs to be minimized by system designer

• Affected by signal delays and communication patterns

• Ex. n communicating tasks may require n (n - 1)/2 communication

links, and the complexity grows quadratically, effectively limiting

the number of processors in the system.

Communication Patterns

• Determined by algorithms used and architectural support provided

• Patterns include

o permutations

o broadcast

o multicast

o conference

• Tradeoffs often exist between granularity of parallelism and

communication demand.

Grain Packing and Scheduling

• Two questions:

o How can I partition a program into parallel “pieces” to yield the shortest

execution time?

o What is the optimal size of parallel grains?

• There is an obvious tradeoff between the time spent scheduling and

synchronizing parallel grains and the speedup obtained by parallel

execution.

• One approach to the problem is called “grain packing.”

Program Graphs and Packing

• A program graph is similar to a dependence graph
o Nodes = { (n,s) }, where n = node name, s = size (larger s = larger grain

size).
o Edges = { (v,d) }, where v = variable being “communicated,” and d =

communication delay.
• Packing two (or more) nodes produces a node with a larger grain

size and possibly more edges to other nodes.
• Packing is done to eliminate unnecessary communication delays or

reduce overall scheduling overhead.

EENG-630 - Chapter 2

EENG-630 - Chapter 2

EENG-630 - Chapter 2

Static multiprocessor scheduling

• Grain packing may not be optimal

• Dynamic multiprocessor scheduling is an NP-hard problem

• Node duplication is a static scheme for multiprocessor scheduling

EENG-630 - Chapter 2

Node duplication

• Duplicate some nodes to eliminate idle time and reduce

communication delays

• Grain packing and node duplication are often used jointly to

determine the best grain size and corresponding schedule

EENG-630 - Chapter 2

Schedule without node duplication

EENG-630 - Chapter 2

A,4
a,1

b,1 c,8

a,8

c,1
C,1B,1

D,2 E,2

e,4d,4

P1 P2 P2P1

A

D

B

I

E
C

I4

6

13

21

27

23
20

16
14
12

4

Schedule with node duplication

EENG-630 - Chapter 2

A,4
a,1

b,1 c,1

a,1

c,1
C’,1B,1

D,2 E,2

P1 P2 P2P1

A

D

B

E

C

A4

6

10

14
13

9

6

4

C,1

A’,4

a,1

C7

Scheduling

• A schedule is a mapping of nodes to processors and start times such

that communication delay requirements are observed, and no two

nodes are executing on the same processor at the same time.

• Some general scheduling goals

o Schedule all fine-grain activities in a node to the same processor to

minimize communication delays.

o Select grain sizes for packing to achieve better schedules for a particular

parallel machine.

Node Duplication

• Grain packing may potentially eliminate interprocessor

communication, but it may not always produce a shorter schedule

(see figure 2.8 (a)).

• By duplicating nodes (that is, executing some instructions on

multiple processors), we may eliminate some interprocessor

communication, and thus produce a shorter schedule.

Grain determination and scheduling optimization

Four major steps are involved in the grain determination and the

process of scheduling optimization:

Step 1: Construct a fine-grain program graph

Step 2: Schedule the fine-grain computation

Step 3: Grain packing to produce coarse grains

Step 4: Generate a parallel schedule based on

the packed graph

EENG-630 - Chapter 2

Example 2.5

• Example 2.5 illustrates a matrix multiplication program requiring 8

multiplications and 7 additions.

• Using various approaches, the program requires:

o 212 cycles (software parallelism only)

o 864 cycles (sequential program on one processor)

o 741 cycles (8 processors) - speedup = 1.16

o 446 cycles (4 processors) - speedup = 1.94

Program decomposition for static multiprocessor scheduling

• two 2 x 2 matrices A and B are multiplied to compute the sum of the four

elements in the resulting product matrix C = A x B. There are eight

multiplications and seven additions to be performed in this program, as

written below:



























2221

1211

2221

1211

2221

1211

C C

C C

B B

B B

A A

A A

Example 2.5 Ctd’

o C11 = A11  B11 + A12  B21

o C12 = A11  B12 + A12  B22

o C21 = A21  B11 + A22  B21

o C22 = A21  B11 + A22  B22

o Sum = C11 + C12 + C21 + C22



























2221

1211

2221

1211

2221

1211

C C

C C

B B

B B

A A

A A

52

Program Flow Mechanisms

• Conventional machines used control flow mechanism in which order of

program execution explicitly stated in user programs.

• Dataflow machines which instructions can be executed by determining

operand availability.

• Reduction machines trigger an instruction’s execution based on the

demand for its results.

Control Flow vs. Data Flow

• Control flow machines used shared memory for instructions and

data. Since variables are updated by many instructions, there

may be side effects on other instructions. These side effects

frequently prevent parallel processing. Single processor systems

are inherently sequential.

• Instructions in dataflow machines are unordered and can be

executed as soon as their operands are available; data is held in

the instructions themselves. Data tokens are passed from an

instruction to its dependents to trigger execution.

Data Flow Features

• No need for

o shared memory

o program counter

o control sequencer

• Special mechanisms are required to

o detect data availability

o match data tokens with instructions needing them

o enable chain reaction of asynchronous instruction execution

A Dataflow Architecture - 1

• The Arvind machine (MIT) has N PEs and an N-by-N
interconnection network.

• Each PE has a token-matching mechanism that dispatches
only instructions with data tokens available.

• Each datum is tagged with
o address of instruction to which it belongs
o context in which the instruction is being executed

• Tagged tokens enter PE through local path (pipelined), and
can also be communicated to other PEs through the routing
network.

A Dataflow Architecture - 2

• Instruction address(es) effectively replace the program counter in a

control flow machine.

• Context identifier effectively replaces the frame base register in a

control flow machine.

• Since the dataflow machine matches the data tags from one

instruction with successors, synchronized instruction execution is

implicit.

A Dataflow Architecture - 3

• An I-structure in each PE is provided to eliminate excessive copying

of data structures.

• Each word of the I-structure has a two-bit tag indicating whether the

value is empty, full, or has pending read requests.

• This is a retreat from the pure dataflow approach.

• Example 2.6 shows a control flow and dataflow comparison.

• Special compiler technology needed for dataflow machines.

EENG-630 - Chapter 2

Demand-Driven Mechanisms

• Data-driven machines select instructions for execution based on the

availability of their operands; this is essentially a bottom-up approach.

o Eager evaluation

• Demand-driven machines take a top-down approach, attempting to execute

the instruction (a demander) that yields the final result. This triggers the

execution of instructions that yield its operands, and so forth.

o Lazy evaluation

• The demand-driven approach matches naturally with functional

programming languages (e.g. LISP and SCHEME).

Reduction Machine Models

• String-reduction model:
o each demander gets a separate copy of the expression string to

evaluate
o each reduction step has an operator and embedded reference to

demand the corresponding operands
o each operator is suspended while arguments are evaluated

• Graph-reduction model:
o expression graph reduced by evaluation of branches or subgraphs,

possibly in parallel, with demanders given pointers to results of
reductions.

o based on sharing of pointers to arguments; traversal and reversal of
pointers continues until constant arguments are encountered.

EENG-630 - Chapter 2

EENG-630 - Chapter 2

System Interconnect Architectures

• Direct networks for static connections

• Indirect networks for dynamic connections

• Networks are used for

o internal connections in a centralized system among

• processors

• memory modules

• I/O disk arrays

o distributed networking of multicomputer nodes

Goals and Analysis

• The goals of an interconnection network are to provide
o low-latency
o high data transfer rate
o wide communication bandwidth

• Analysis includes
o latency
o bisection bandwidth
o data-routing functions
o scalability of parallel architecture

Network Properties and Routing

• Static networks: point-to-point direct connections that will not

change during program execution

• Dynamic networks:

o switched channels dynamically configured to match user program

communication demands

o include buses, crossbar switches, and multistage networks

• Both network types also used for inter-PE data routing in SIMD

computers

Network Parameters

• Network size: The number of nodes in the graph used to represent

the network

• Node Degree d: The number of edges incident to a node. Sum of in

degree and out degree

• Network Diameter D: The maximum shortest path between any two

nodes

EENG-630 - Chapter 2

Network Parameters (cont.)

• Bisection Width:
o Channel bisection width b: The minimum number of edges along the cut

that divides the network in two equal halves
o Each channel has w bit wires
o Wire bisection width: B=b*w; B is the wiring density of the network.
o It provides a good indicator of the max communication bandwidth along

the bisection of the network

EENG-630 - Chapter 2

Terminology - 1

• Network usually represented by a graph with a finite
number of nodes linked by directed or undirected edges.

• Number of nodes in graph = network size .
• Number of edges (links or channels) incident on a node =

node degree d (also note in and out degrees when edges
are directed). Node degree reflects number of I/O ports
associated with a node, and should ideally be small and
constant.

• Diameter D of a network is the maximum shortest path
between any two nodes, measured by the number of links
traversed; this should be as small as possible (from a
communication point of view).

Terminology - 2

• Channel bisection width b = minimum number of edges cut
to split a network into two parts each having the same
number of nodes. Since each channel has w bit wires, the
wire bisection width B = bw. Bisection width provides
good indication of maximum communication bandwidth
along the bisection of a network, and all other cross sections
should be bounded by the bisection width.

• Wire (or channel) length = length (e.g. weight) of edges
between nodes.

• Network is symmetric if the topology is the same looking
from any node; these are easier to implement or to
program.

• Other useful characterizing properties: homogeneous
nodes? buffered channels? nodes are switches?

Data Routing Functions

• Shifting
• Rotating
• Permutation (one to one)
• Broadcast (one to all)
• Multicast (many to many)
• Personalized broadcast (one to many)
• Shuffle
• Exchange
• Etc.

Permutations

• For n objects there are n! permutations by which
the n objects can be reordered. The set of all
permutations form a permutation group with
respect to a composition operation. Cycle
notation can be used to specify a permutation
operation.

• Permutation p = (a, b, c)(d, e) means: a->b, b-
>c, c->a, d->e and e->d in a circular fashion. The
cycle (a, b, c) has a period of 3, and the cycle (d,
e) has a period of 2. p will have a period equal to
2 x 3 = 6.

EENG-630 - Chapter 2

Permutations (cont.)

• Can be implemented using crossbar switches, multistage networks

or with shifting or broadcast operations.

• Permutation capability is an indication of network’s data routing

capabilities

EENG-630 - Chapter 2

Perfect Shuffle and Exchange

• Harold Stone suggested the special permutation that entries

according to the mapping of the k-bit binary number a b … k to b c

… k a (that is, shifting 1 bit to the left and wrapping it around to the

least significant bit position).

• The inverse perfect shuffle reverses the effect of the perfect shuffle.

Perfect Shuffle

• Special permutation function

• n = 2k objects; each object representation requires k bits

• Perfect shuffle maps x to y where:

o x = (xk-1, …, x1, x0)

o y = (xk-2, …, x1, x0, xk-1)

EENG-630 - Chapter 2

EENG-630 - Chapter 2

Hypercube Routing Functions

• If the vertices of a n-dimensional cube are labeled with n-bit

numbers so that only one bit differs between each pair of adjacent

vertices, then n routing functions are defined by the bits in the

node (vertex) address.

• For example, with a 3-dimensional cube, we can easily identify

routing functions that exchange data between nodes with addresses

that differ in the least significant, most significant, or middle bit.

Exchange

• n = 2k objects; each object representation requires k bits

• The exchange maps x to y where:

o x = (xk-1, …, x1, x0)

o y = (xk-1, …, x1, x0’)

• Hypercube routing functions are exchanges

EENG-630 - Chapter 2

EENG-630 - Chapter 2

Broadcast and Multicast

• Broadcast: One-to-all mapping

• Multicast: one subset to another subset(many to many)

• Personalized Broadcast: Personalized messages to only selected

receivers

EENG-630 - Chapter 2

Factors Affecting Performance

• Functionality – how the network supports data routing, interrupt

handling, synchronization, request/message combining, and

coherence

• Network latency – worst-case time for a unit message to be

transferred

• Bandwidth – maximum data rate

• Hardware complexity – implementation costs for wire, logic,

switches, connectors, etc.

• Scalability – how easily does the scheme adapt to an increasing

number of processors, memories, etc.?

Static Networks

• Linear Array

• Ring and Chordal Ring

• Barrel Shifter

• Tree and Star

• Fat Tree

• Mesh and Torus

Static Networks – Linear Array

• N nodes connected by n-1 links (not a bus);

• segments between different pairs of nodes can be used in parallel.

• Internal nodes have degree 2; end nodes have degree 1.

• Diameter = n-1

• Bisection = 1

• For small n, this is economical, but for large n, it is obviously

inappropriate.

EENG-630 - Chapter 2

Static Networks – Ring, Chordal Ring

• Like a linear array, but the two end nodes are connected by an n th
link; the ring can be uni- or bi-directional. Diameter is n/2 for a
bidirectional ring, or n for a unidirectional ring.

• By adding additional links (e.g. “chords” in a circle), the node degree
is increased, and we obtain a chordal ring. This reduces the network
diameter.

• In the limit, we obtain a fully-connected network, with a node
degree of n -1 and a diameter of 1.

EENG-630 - Chapter 2

Static Networks – Barrel Shifter

• Like a ring, but with additional links between all pairs of nodes that
have a distance equal to a power of 2.

• With a network of size N = 2n, each node has degree d = 2n -1, and
the network has diameter D = n /2.
o For ex: N=16,d=7,D=2

• Barrel shifter connectivity is greater than any chordal ring of lower
node degree.

• Barrel shifter much less complex than fully-interconnected network.

EENG-630 - Chapter 2

Static Networks – Tree and Star

• A k-level completely balanced binary tree will have N = 2k – 1 nodes,

with maximum node degree of 3 and network diameter is 2(k – 1).

• The balanced binary tree is scalable, since it has a constant

maximum node degree.

• A star is a two-level tree with a node degree d = N – 1 and a constant

diameter of 2.

Static Networks – Fat Tree

• A fat tree is a tree in which the number of edges between nodes

increases closer to the root (similar to the way the thickness of limbs

increases in a real tree as we get closer to the root).

• The edges represent communication channels (“wires”), and since

communication traffic increases as the root is approached, it seems

logical to increase the number of channels there.

EENG-630 - Chapter 2

Static Networks – Mesh and Torus

• Pure mesh – N = n k nodes with links between each adjacent pair of

nodes in a row or column (or higher degree). This is not a

symmetric network; interior node degree d = 2k, diameter = k (n –

1).

• Illiac mesh (used in Illiac IV computer) – wraparound is allowed,

thus reducing the network diameter to about half that of the

equivalent pure mesh.

• A torus has ring connections in each dimension, and is symmetric.

An n  n binary torus has node degree of 4 and a diameter of 2  n /

2 .

EENG-630 - Chapter 2

Static Networks – Systolic Array

• A systolic array is an arrangement of processing elements and

communication links designed specifically to match the computation

and communication requirements of a specific algorithm (or class of

algorithms).

• This specialized character may yield better performance than more

generalized structures, but also makes them more expensive, and

more difficult to program.

EENG-630 - Chapter 2

Static Networks – Hypercubes

• A binary n-cube architecture with N = 2n nodes spanning along n

dimensions, with two nodes per dimension.

• The hypercube scalability is poor, and packaging is difficult for

higher-dimensional hypercubes.

Static Networks – Cube-connected Cycles

• k-cube connected cycles (CCC) can be created from a k-cube by

replacing each vertex of the k-dimensional hypercube by a ring of k

nodes.

• A k-cube can be transformed to a k-CCC with k  2k nodes.

• The major advantage of a CCC is that each node has a constant

degree (but longer latency) than in the corresponding k-cube. In

that respect, it is more scalable than the hypercube architecture.

EENG-630 - Chapter 2

Static Networks – k-ary n-Cubes

• Rings, meshes, tori, binary n-cubes, and Omega networks (to be

seen) are topologically isomorphic to a family of k-ary n-cube

networks.

• n is the dimension of the cube, and k is the radix, or number of of

nodes in each dimension.

• The number of nodes in the network, N, is k n.

• Folding (alternating nodes between connections) can be used to

avoid the long “end-around” delays in the traditional

implementation.

EENG-630 - Chapter 2

Static Networks – k-ary n-Cubes

• The cost of k-ary n-cubes is dominated by the amount of wire, not

the number of switches.

• With constant wire bisection, low-dimensional networks with wider

channels provide lower latecny, less contention, and higher “hot-

spot” throughput than higher-dimensional networks with narrower

channels.

Network Throughput

• Network throughput – number of messages a network can handle in

a unit time interval.

• One way to estimate is to calculate the maximum number of

messages that can be present in a network at any instant (its

capacity); throughput usually is some fraction of its capacity.

• A hot spot is a pair of nodes that accounts for a disproportionately

large portion of the total network traffic (possibly causing

congestion).

• Hot spot throughput is maximum rate at which messages can be

sent between two specific nodes.

Minimizing Latency

• Latency is minimized when the network radix k and dimension n are

chose so as to make the components of latency due to distance (# of

hops) and the message aspect ratio L / W (message length L divided

by the channel width W) approximately equal.

• This occurs at a very low dimension. For up to 1024 nodes, the best

dimension (in this respect) is 2.

Dynamic Connection Networks

• Dynamic connection networks can implement all communication

patterns based on program demands.

• In increasing order of cost and performance, these include

o bus systems

o multistage interconnection networks

o crossbar switch networks

• Price can be attributed to the cost of wires, switches, arbiters, and

connectors.

• Performance is indicated by network bandwidth, data transfer rate,

network latency, and communication patterns supported.

Dynamic Networks – Bus Systems

• A bus system (contention bus, time-sharing bus) has

o a collection of wires and connectors

o multiple modules (processors, memories, peripherals, etc.) which

connect to the wires

o data transactions between pairs of modules

• Bus supports only one transaction at a time.

• Bus arbitration logic must deal with conflicting requests.

• Lowest cost and bandwidth of all dynamic schemes.

• Many bus standards are available.

EENG-630 - Chapter 2

Dynamic Networks – Switch Modules

• An a  b switch module has a inputs and b outputs. A binary switch

has a = b = 2.

• It is not necessary for a = b, but usually a = b = 2k, for some integer

k.

• In general, any input can be connected to one or more of the

outputs. However, multiple inputs may not be connected to the

same output.

• When only one-to-one mappings are allowed, the switch is called a

crossbar switch.

EENG-630 - Chapter 2

Multistage Networks

• In general, any multistage network is comprised of a collection of a 

b switch modules and fixed network modules. The a  b switch

modules are used to provide variable permutation or other

reordering of the inputs, which are then further reordered by the

fixed network modules.

• A generic multistage network consists of a sequence alternating

dynamic switches (with relatively small values for a and b) with

static networks (with larger numbers of inputs and outputs). The

static networks are used to implement interstage connections (ISC).

EENG-630 - Chapter 2

Omega Network

• A 2  2 switch can be configured for
o Straight-through
o Crossover
o Upper broadcast (upper input to both outputs)
o Lower broadcast (lower input to both outputs)
o (No output is a somewhat vacuous possibility as well)

• With four stages of eight 2  2 switches, and a static
perfect shuffle for each of the four ISCs, a 16 by 16
Omega network can be constructed (but not all
permutations are possible).

• In general , an n-input Omega network requires log 2 n
stages of 2  2 switches and n / 2 switch modules.

EENG-630 - Chapter 2

Baseline Network

• A baseline network can be shown to be topologically equivalent to

other networks (including Omega), and has a simple recursive

generation procedure.

• Stage k (k = 0, 1, …) is an m  m switch block (where m = N / 2k)

composed entirely of 2  2 switch blocks, each having two

configurations: straight through and crossover.

4  4 Baseline Network

Crossbar Networks

• A m  n crossbar network can be used to provide a constant latency

connection between devices; it can be thought of as a single stage

switch.

• Different types of devices can be connected, yielding different

constraints on which switches can be enabled.
o With m processors and n memories, one processor may be able to generate

requests for multiple memories in sequence; thus several switches might be set in

the same row.

o For m  m interprocessor communication, each PE is connected to both an input

and an output of the crossbar; only one switch in each row and column can be

turned on simultaneously. Additional control processors are used to manage the

crossbar itself.

EENG-630 - Chapter 2

EENG-630 - Chapter 2

