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 In contrast to learning methods that construct a general, 

explicit description of the target function when training 

examples are provided, instance-based learning 

methods simply store the training examples.  

 Generalizing beyond these examples is postponed until a new 

instance must be classified.  

 Each time a new query instance is encountered, its 

relationship to the previously stored examples is examined in 

order to assign a target function value for the new instance.  



 Instance-based learning includes nearest neighbor and locally 

weighted regression methods that assume instances can be 

represented as points in a Euclidean space. It also includes case-

based reasoning methods that use more complex, symbolic 

representations for instances.  

 Instance-based methods are sometimes referred to as "lazy" 

learning methods because they delay processing until a new 

instance must be classified.  

 A key advantage of this kind of delayed, or lazy, learning is that 

instead of estimating the target function once for the entire 

instance space, these methods can estimate it locally and 

differently for each new instance to be classified. 

 



8.1 INTRODUCTION 

 Instance-based learning methods such as nearest 

neighbor and locally weighted regression are 

conceptually straightforward approaches to 

approximating real-valued or discrete-valued target 

functions.  

 Learning in these algorithms consists of simply storing 

the presented training data.  

 When a new query instance is encountered, a set of 

similar related instances is retrieved from memory and 

used to classify the new query instance 



 One key difference between these approaches and the methods 

discussed in other chapters is that instance-based approaches can 

construct a different approximation to the target function for each 

distinct query instance that must be classified.  



disadvantages 
 the cost of classifying new instances can be high.  

 This is due to the fact that nearly all computation takes place at 

classification time rather than when the training examples are first 

encountered.  

 Therefore, techniques for efficiently indexing training examples are a 

significant practical issue in reducing the computation required at 

query time.  

 they typically consider all attributes of the instances when 

attempting to retrieve similar training examples from memory.  

 If the target concept depends on only a few of the many available 

attributes, then the instances that are truly most "similar" may well 

be a large distance apart. 



8.2 k-NEAREST NEIGHBOR LEARNING 

 The most basic instance-based method is the k-NEAREST 

NEIGHBOR LEARNING algorithm.  

 This algorithm assumes all instances correspond to points in 

the n-dimensional space     .  

 The nearest neighbors of an instance are defined in terms of 

the standard Euclidean distance. 



 More precisely, let an arbitrary instance x be described by the 

feature vector 

 



 In nearest-neighbor learning the target function may be 

either discrete-valued or real-valued.  

 Let us first consider learning discrete-valued target 

functions of the form f :       V, where V is the finite set 

{v1, . . . vs}.  

 The k-NEAREST NEIGHBOR algorithm for 

approximating a discrete-valued target function is given 

in Table 8.1. 



 



 

 As shown there, the value 𝑓 (xq) returned by this algorithm as its 

estimate of f(xq) is just the most common value of f among the k 

training examples nearest to xq.  

 If we choose k = 1, then the 1-NEAREST NEIGHBOR algorithm 

assigns to 𝑓 (xq) the value f(xi) where xi is the training instance nearest 

to xq 
 

 For larger values of k, the algorithm assigns the most common 

value among the k nearest training examples. 

 



 



 Figure 8.1 illustrates the operation of the k-NEAREST 

NEIGHBOR algorithm for the case where the instances are 

points in a two-dimensional space and where the target 

function is boolean valued.  

 The positive and negative training examples are shown by 

"+" and "-“ respectively.  

 A query point xq  
is shown as well. Note the 1-NEAREST 

NEIGHBOR algorithm classifies xq 
 as a positive example in 

this figure, whereas the 5-NEAREST NEIGHBOR algorithm 

classifies it as a negative example. 



 Note the k-NEAREST NEIGHBOR algorithm never forms an 

explicit general hypothesis 𝑓  regarding the target function f .  

 It simply computes the classification of each new query instance 

as needed.  

 Nevertheless, we can still ask what the implicit general 

function is, or what classifications would be assigned if we were 

to hold the training examples constant and query the algorithm 

with every possible instance in X. 



 The diagram on the right side of Figure 8.1 shows the shape of this 

decision surface induced by 1-NEAREST NEIGHBOR over the 

entire instance space.  

 The decision surface is a combination of convex polyhedra 

surrounding each of the training examples.  

 For every training example, the polyhedron indicates the set of query 

points whose classification will be completely determined by that 

training example.  

 Query points outside the polyhedron are closer to some other 

training example.  

 This kind of diagram is often called the Voronoi diagram of the 

set of training examples. 





8.2.1 Distance-Weighted NEAREST NEIGHBOR Algorithm 

 One obvious refinement to the k-NEAREST NEIGHBOR 

Algorithm is to weight the contribution of each of the 

k neighbors according to their distance to the query point 

xq giving greater weight to closer neighbors.  

 For example, in the algorithm of Table 8.1, which 

approximates discrete-valued target functions, we might 

weight the vote of each neighbor according to the inverse 

square of its distance from xq. 



 





 Note all of the above variants of the k-NEAREST 

NEIGHBOR Algorithm consider only the k nearest 

neighbors to classify the query point.  

 Once we add distance weighting, there is really no harm 

in allowing all training examples to have an influence on 

the classification of the xq because very distant examples 

will have very little effect on 𝑓 (xq) .  



 The only disadvantage of considering all examples is that our 

classifier will run more slowly.  

 If all training examples are considered when classifying a new 

query instance, we call the algorithm a global method. 

 If only the nearest training examples are considered, we call 

it a local method.  

 When the rule in Equation (8.4) is applied as a global 

method, using all training examples, it is known as Shepard's 

method (Shepard 1968). 

 



8.2.2 Remarks on k-NEAREST NEIGHBOR Algorithm 

 The distance-weighted k-NEAREST NEIGHBOR Algorithm 

is a highly effective inductive inference method for many 

practical problems.  

 It is robust to noisy training data and quite effective when it 

is provided a sufficiently large set of training data.  

 Note that by taking the weighted average of the k neighbors 

nearest to the query point, it can smooth out the impact of 

isolated noisy training examples. 



curse of dimensionality 

 One practical issue in applying k-NEAREST NEIGHBOR 

Algorithms is that the distance between instances is 

calculated based on all attributes of the instance  (i.e., on all 

axes in the Euclidean space containing the instances). 

 This lies in contrast to methods such as rule and decision tree 

learning systems that select only a subset of the instance 

attributes when forming the hypothesis. 



 To see the effect of this policy, consider applying k-NN to a 

problem in which each instance is described by 20 attributes, but 

where only 2 of these attributes are relevant to determining the 

classification for the particular target function.  

 In this case, instances that have identical values for the 2 relevant 

attributes may nevertheless be distant from one another in the 20-

dimensional instance space.  

 As a result, the similarity metric used by k-NN—depending on all 

20 attributes-will be misleading.  



 The distance between neighbors will be  dominated by the 

large number of irrelevant attributes. This difficulty, which 

arises when many irrelevant attributes are present, is 

sometimes referred to as the curse of dimensionality.  

 Nearest-neighbor approaches are especially sensitive to this 

problem. 

 



 One interesting approach to overcoming this problem is to weight 

each attribute differently when calculating the distance between 

two instances.  

 This corresponds to stretching the axes in the Euclidean space, 

shortening the axes that correspond to less relevant attributes, and 

lengthening the axes that correspond to more relevant attributes. 

The amount by which each axis should be stretched can be 

determined automatically using a cross-validation approach.  



 To see how, first note that we wish to stretch (multiply) the jth axis by 

some factor zj, where the values z1 . . . zn are chosen to minimize the 

true classification error of the learning algorithm. Second, note that 

this true error can be estimated using crossvalidation. 

 Hence, one algorithm is to select a random subset of the available data 

to use as training examples, then determine the values of z1 . . . zn that 

lead to the minimum error in classifying the remaining examples.  

 By repeating this process multiple times the estimate for these 

weighting factors can be made more accurate. This process of 

stretching the axes in order to optimize the performance of k-NN 

provides a mechanism for suppressing the impact of irrelevant 

attributes. 

 



 An even more drastic alternative is to completely eliminate 

the least relevant attributes from the instance space. This is 

equivalent to setting some of the zi scaling factors to zero.  

 Moore and Lee (1994) discuss efficient cross-validation 

methods for selecting relevant subsets of the attributes for k-

NN algorithms.  

 In particular, they explore methods based on leave-one-

out crossvalidation, in which the set of m training 

instances is repeatedly divided into a training set of size m - 

1 and test set of size 1, in all possible ways.  



 This leave-one out approach is easily implemented in k-NN 

algorithms because no additional training effort is required each 

time the training set is redefined. 

 Note both of the above approaches can be seen as stretching each 

axis by some constant factor.  

 Alternatively, we could stretch each axis by a value that varies over 

the instance space.  

 However, as we increase the number of degrees of freedom 

available to the algorithm for redefining its distance metric in such 

a fashion, we also increase the risk of overfitting. Therefore, the 

approach of locally stretching the axes is much less common. 

 



 One additional practical issue in applying k-NN is efficient 
memory indexing.  

 Because this algorithm delays all processing until a new query 
is received, significant computation can be required to 
process each new query.  

 One such indexing method is the kd-tree (Bentley 1975; 
Friedman et al. 1977), in which instances are stored at the 
leaves of a tree, with nearby instances stored at the same or 
nearby nodes.  

 The internal nodes of the tree sort the new query xq to the 
relevant leaf by testing selected attributes of xq. 



 



8.3 LOCALLY WEIGHTED REGRESSION 

 The nearest-neighbor approaches described in the previous 

section can be thought of as approximating the target 

function f (x) at the single query point x = xq. 

 Locally weighted regression is a generalization of this 

approach.  

 It constructs an explicit approximation to f over a local 

region surrounding xq.  

 Locally weighted  regression uses nearby or distance-

weighted training examples to form this local approximation 

to f. 



 For example, we might approximate the target function in the 

neighborhood surrounding xq, using a linear function, a quadratic 

function, a multilayer neural network, or some other functional 

form.  

 The phrase "locally weighted regression" is called  

 local because the function is approximated based only on data near 

the query point,  

 weighted because the contribution of each training example is 

weighted by its distance from the query point, and  

 regression because this is the term used widely in the statistical 

learning community for the problem of approximating real-valued 

functions. 



 



8.3.1 Locally Weighted Linear 

Regression 



 



 



 Criterion two is perhaps the most esthetically pleasing 

because it allows every training  example to have an 

impact on the classification of xq.  

 However, this approach requires computation that grows 

linearly with the number of training examples.  

 Criterion three is a good approximation to criterion two 

and has the advantage that computational cost is 

independent of the total number of training examples; 

its cost depends only on the number k of neighbors 

considered. 



 



 



8.4 RADIAL BASIS FUNCTIONS 

 One approach to function approximation that is closely 

related to distance-weighted regression and also to artificial 

neural networks is learning with radial basis functions  

 In this approach, the learned hypothesis is a function of the 

form 

 





 The function given by Equation (8.8) can be viewed as 

describing a two-layer network where the first layer of units 

computes the values of the various Ku(d(xu, x)) and where 

the second layer computes a linear combination of these first-

layer unit values.  

 An example radial basis function (RBF) network is illustrated 

in Figure 8.2. 



 



 Given a set of training examples of the target function, RBF 

networks are typically trained in a two-stage process.  

 First, the number k of hidden units is determined and each 

hidden unit u is defined by choosing the values of xu and σu
2 that 

define its kernel function Ku(d(xu, x)).  

 Second, the weights wu are trained to maximize the fit of the 

network to the training data, using the global error criterion 

given by Equation (8.5).  

 Because the kernel functions are held fixed during this 

second stage, the linear weight values wu can be trained very 

efficiently. 



 To summarize, radial basis function networks provide a global 
approximation to the target function, represented by a linear 
combination of many local kernel functions.  

 The value for any given kernel function is non-negligible only 
when the input x falls into the region defined by its particular 
center and width. 

 Thus, the network can be viewed as a smooth linear combination 
of many local approximations to the target function.  

 One key advantage to RBF networks is that they can be trained 
much more efficiently than feedforward networks trained with 
BACKPROPAGATION. This follows from the fact that the input 
layer and the output layer of an RBF are trained separately. 



8.5 CASE-BASED REASONING 

 Instance-based methods such as k-NN and locally weighted 

regression share three key properties.  

 First, they are lazy learning methods in that they defer the 

decision of how to generalize beyond the training data until a 

new query instance is observed.  

 Second, they classify new query instances by analyzing similar 

instances while ignoring instances that are very different from 

the query.  

 Third, they represent instances as real-valued points in an n-

dimensional Euclidean space. 



 Case-based reasoning (CBR) is a learning paradigm based on 

the first two of these principles, but not the third.  

 In CBR, instances are typically represented using more rich 

symbolic descriptions, and the methods used to retrieve 

similar instances are correspondingly more elaborate. 



 CBR has been applied to problems such as conceptual design 

of mechanical devices based on a stored library of previous 

designs (Sycara et al. 1992), reasoning about new legal cases 

based on previous rulings (Ashley 1990), and solving 

planning and scheduling problems by reusing and combining 

portions of previous solutions to similar problems (Veloso 

1992). 



 Let us consider a prototypical example of a case-based reasoning 
system to ground our discussion. T 

 The CADET system (Sycara et al. 1992) employs casebased 
reasoning to assist in the conceptual design of simple mechanical 
devices such as water faucets.  

 It uses a library containing approximately 75 previous designs and 
design fragments to suggest conceptual designs to meet the 
specifications of new design problems. Each instance stored in 
memory (e.g., a water pipe) is represented by describing both its 
structure and its qualitative function. 

 New design problems are then presented by specifying the desired 
function and requesting the corresponding structure. This problem 
setting is illustrated in Figure 8.3. 



 



 



 The top half of the figure shows the description of a typical stored 
case called a T-junction pipe.  

 Its function is represented in terms of the qualitative relationships 
among the waterflow levels and temperatures at its inputs and 
outputs.  

 In the functional description at its right, an arrow with a "+" label 
indicates that the variable at the arrowhead increases with the 
variable at its tail.  

 For example, the output waterflow Q3 increases with increasing 
input waterflow Ql. 

 a "-" label indicates that the variable at the head decreases with the 
variable at the tail. 



 



 The bottom half of this figure depicts a new design problem described 
by its desired function.  

 This particular function describes the required behavior of one type of 
water faucet.  
 Qc refers to the flow of cold water into the faucet,  
 Qh to the input flow of hot water, and  
 Qm to the single mixed flow out of the faucet.  
 Similarly, Tc, Th, and Tm refer to the temperatures of the cold water, hot 

water, and mixed water respectively.  
 The variable Ct denotes the control signal for temperature that is input to 

the faucet, and  
 Cf denotes the control signal for waterflow.  

 Note the description of the desired function specifies that these controls 
Ct and Cf are to influence the water flows Qc and Qh, thereby indirectly 
influencing the faucet output flow Qm and temperature Tm. 



 Given this functional specification for the new design 

problem, CADET searches its library for stored cases whose 

functional descriptions match the design problem.  

 If an exact match is found, indicating that some stored case 

implements exactly the desired function, then this case can 

be returned as a suggested solution to the design problem.  

 If no exact match occurs, CADET may find cases that match 

various subgraphs of the desired functional specification. 



 In Figure 8.3, for example, the T-junction function matches a 

subgraph of the water faucet function graph.  

 More generally, CADET searches for subgraph isomorphisms 

between the two function graphs, so that parts of a case can 

be found to match parts of the design specification. 

 Furthermore, the system may elaborate the original function 

specification graph in order to create functionally equivalent 

graphs that may match still more cases.  

 It uses general knowledge about physical influences to create 

these elaborated function graphs. 



 For example, it uses a rewrite rule that allows it to rewrite 

the influence 

 



 This rewrite rule can be interpreted as stating that if B must 

increase with A, then it is sufficient to find some other 

quantity x such that B increases with x, and x increases with 

A.  

 Here x is a universally quantified variable whose value is 

bound when matching the function graph against the case 

library.  

 In fact, the function graph for the faucet shown in Figure 8.3 

is an elaboration of the original - functional specification 

produced by applying such rewrite rules. 



 



21-11-2019 Machine Learning-15CS73 1 

Machine Learning-Module 5 

Reinforcement Learning 

Mr. Manoj T 

Assistant Professor, 

Department of CSE 



21-11-2019 Machine Learning-15CS73 2 

Chapter 13: Reinforcement Learning 
 

Basics of Reinforcement Learning 

 

• Reinforcement learning addresses the question of how an 

autonomous agent that senses and acts in its environment can 

learn to choose optimal actions to achieve its goals. 

 

• This very generic problem covers tasks such as learning to 

control a mobile robot, learning to optimize operations in 

factories, and learning to play board games. 

 

• Each time the agent performs an action in its environment, a 

trainer may provide a reward or penalty to indicate the 

desirability of the resulting state. 
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• For ex : when training an agent to play a game the trainer might 

provide a positive reward when the game is won, negative reward 

when it is lost, and zero reward in all other states. 

 

• The task of the agent is to learn from this indirect, delayed 

reward, to choose sequences of actions that produce the greatest 

cumulative reward. 
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Introduction 

 

• Consider building a learning robot. The robot, or agent, has a set 

of sensors to observe the state of its environment, and a set of 

actions it can perform to alter this state. 

 

• For ex : a mobile robot may have sensors such as a camera and 

sonars and actions such as “move forward” and “turn”. 

 

• Its task is to learn a control strategy, or policy, for choosing 

actions that achieve its goals. 

 

• For ex : the robot may have a goal of docking onto its battery 

charger whenever its battery level is low.  
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• We assume that the goals of the agent can be defined by a reward 

function that assigns a numerical value-an immediate payoff-to 

each distinct action the agent may take from each distinct state. 

 

• For ex : the goal of docking to the battery charger can be captured 

by assigning a positive reward(+100) to state-action transitions 

and a reward of zero to every other state-action transition. 

 

• This reward function may be built into the robot, or known only 

to an external teacher who provides the reward value for each 

action performed by the robot. 

 

• The task of the robot is to perform sequences of actions, observe 

their consequences, and learn a control policy. 
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• The control policy we desire is one that, from any initial state, 

chooses actions that maximize the reward accumulated over time 

by the agent. 

 

• This general setting for robot learning is summarized in figure 

13.1. 

 

• It is very much apparent from the figure 13.1 that the problem of 

learning a control policy to maximize cumulative reward is very 

general and covers many problems beyond robot learning tasks 

such as manufacturing optimization problems, sequential 

scheduling problems such as choosing which taxis to send for 

passengers in a large city. 
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Figure 13.1: An agent interacting with its environment  
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• In general, we are interested in any type of agent that must learn 

to choose actions that alter the state of its environment and 

where a cumulative reward function is used to define the quality 

of any given action sequence. 

 

• Within this class of problems, the actions may have deterministic 

or nondeterministic outcomes. In case of a non-deterministic 

outcomes, the learner lacks a domain theory that describes the 

outcomes of its actions. 

 

• One of the highly successful application of the reinforcement 

learning algorithms is in game-playing problem. Tesauro (1995) 

describes the TD-GAMMON program which has used 

reinforcement learning to become a world-class backgammon 

player. 
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• The problem of learning a control policy to choose actions is similar 

in some respects to the function approximation problems discussed 

problems earlier. 

 

• The target function to be learned in this case is a control policy, 

𝝅: 𝑺 → 𝑨 that outputs an appropriate action a from the set A, given 

the current state s from the set S. 
 

• However, this reinforcement learning problem differs from other 

function approximation tasks in several important respects. 

 

 Delayed Reward:  

 The task of the agent is to learn a target function 𝝅 that maps 

from the current state s to the optimal action a = 𝝅(s). 

 

 In other learning methods, each training example would be a 

pair of the form <s, 𝝅(s)>.  
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 In reinforcement learning, however, training information is 

not available in this form. 

 

 Instead, the trainer provides only a sequence of immediate 

reward values as the agent executes its sequence of actions. 

 

 The agent, therefore, faces the problem of temporal credit 

assignment: determining which of the actions in its 

sequence are to be credited with producing the eventual 

rewards. 

 

 Exploration: 

 In reinforcement learning, the agent influences the 

distribution of training examples by the action sequence it 

chooses. 

 

 This raises the question of which experimentation strategy 

produces most effective learning. 
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 The learner faces a tradeoff in choosing whether to favor 

exploration of unknown states and actions (to gather new 

information), or exploitation of states and actions that it has 

already learned will yield high reward(to maximize its 

cumulative reward).  

 

 Partially observable states: 

 It is convenient to assume that the agent's sensors can 

perceive the entire state of the environment at each time 

step, in many practical situations sensors provide only partial 

information. 

 

 For ex : a robot with a forward-pointing camera cannot see 

what is behind it. 

 

 In such cases, it may be necessary for the agent to consider 

its previous observations together with its current sensor 

data 
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    when choosing actions, and the best policy may be one that  

    chooses actions specifically to improve the observability of  

    the environment. 

 

 Life-long Learning: 

 Unlike isolated function approximation tasks, robot learning 

     often requires that the robot learn several related tasks  

     within the same environment, using the same sensors. 

 

 For ex : a mobile robot may need to learn how to dock on its 

battery charger, how to navigate through narrow corridors, 

and how to pick up output from laser printers. 

 

 This setting raises the possibility of using previously 

obtained experience or knowledge to reduce sample 

complexity when learning new tasks. 
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The Learning Task 
 

• Here we will formulate the problem of learning sequential control 

strategies more precisely. 

 

• There are many ways to do so. For ex:  

 We might assume the agent's actions are deterministic or that 

they are nondeterministic. 

 

 We might assume that the agent can predict the next state that 

will result from each action, or that it cannot. 

 

 We might assume that the agent is trained by an expert who 

shows it examples of optimal action sequences, or that it must 

train itself by performing actions of its own choice. 
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• Let us consider the quite general formulation of the problem, based 

on Markov Decision Processes(MDP). 

 

• The formulation of the problem is given in Eqn 13.1 

 

 

 

 

 

 

 

• In a Markov decision process (MDP) the agent can perceive a set S 

of distinct states of its environment and has a set A of actions that it 

can perform. 

 

• At each discrete time step t, the agent senses the current state st, 

chooses a current action at, and performs it. 

Eqn 13.1 
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• The environment responds by giving the agent a reward rt =r(st,at) 

and by producing the succeeding state st+l = 𝜹(st,at). 

 

• Here the functions 𝜹 and r are part of the environment and are not 

necessarily known to the agent. 

 

• In an MDP, the functions 𝜹(st,at) and r(st,at) depend only on the 

current state and action, and not on earlier states or actions. 

 

• Here we consider only the case in which S and A are finite. 

 

Learning by agent 

 

• The task of the agent is to learn a policy, 𝝅 : S → A, for selecting its 

next action at based on the current observed state st; i.e: 𝝅(st) = at. 
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• One obvious approach is to require the policy that produces the 

greatest possible cumulative reward for the robot over time. 

 

• To state this requirement more precisely, we define the cumulative 

value V𝝅(st) achieved by following an arbitrary policy 𝝅 from an 

     arbitrary initial state st is as given in Eqn 13.1 

 

• Eqn 13.1 gives following information 

 The sequence of rewards rt+i is generated by beginning at state st 

and by repeatedly using the policy 𝝅 to select actions(at = 𝜋(st), 

     at+l = 𝜋(st+1) etc) 

 

 Here 0 <γ< 1 is a constant that determines the relative value of 

delayed versus immediate rewards. 

 

• In particular, rewards received i time steps into the future are 

discounted exponentially by a factor of γi.  
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• The quantity V𝝅 (s) defined by Eqn 13.1 is often called the 

discounted cumulative reward achieved by policy 𝝅 from initial 

state s. 

 

• It is reasonable to discount future rewards relative to immediate 

rewards because, in many cases, we prefer to obtain the reward 

sooner rather than later. 

 

• There are alternative ways to calculate the cumulative rewards. 

They are: 

 The finite horizon reward  𝒓𝒕 + 𝒊
𝒉
𝒊=𝟎  considers the 

undiscounted sum of rewards over a finite number h of steps. 

 

 The average reward 𝒍𝒊𝒎
𝒉 →∞

𝟏

𝒉
  𝒓𝒕 + 𝒊

𝒉
𝒊=𝟎   which considers 

     the average reward per time step over the entire lifetime of the  

     agent. 
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• We require that the agent learn a policy 𝝅 that maximizes V𝝅(s) for 

all states s. 

 

• We will call such a policy an optimal policy and denote it by 𝝅
∗
 

 

 

 

 

 

 

 

• To simplify notation, we will refer to the value function V𝝅*(s) of 

such an optimal policy as V*(s). 

 

• V*(s) gives the maximum discounted cumulative reward that the 

    agent can obtain starting from state s by following the optimal  

    policy 
 

 

 

Eqn 13.2 
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Illustration of learning task through Grid World Environment 

 

• Consider a simple grid-world environment is depicted in the 

topmost diagram of figure 13.2. 

 

• The six grid squares in this diagram represent six possible states, or 

locations, for the agent. 

 

• Each arrow in the diagram represents a possible action the agent can 

take to move from one state to another. 

 

• The number associated with each arrow represents the immediate 

reward r(s,a) the agent receives if it executes the corresponding 

state-action transition. 

 

• The immediate reward in this particular environment is defined to 

be zero for all state-action transitions except for those leading into 

the state labeled G 
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Figure 13.2: A simple deterministic world to illustrate the basic concepts of Q-learning  
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• It is convenient to think of the state G as the goal state, because the 

only way the agent can receive reward, in this case, is by entering 

this state. 

 

• In this particular environment, the only action available to the agent 

once it enters the state G is to remain in this state. For this reason, 

we call G an absorbing state. 

 

• Once the states, actions, and immediate rewards are defined, and 

once we choose a value for the discount factor γ, we can determine 

the optimal policy 𝝅* and its value function V*(s). 

 

• In this case, let us choose γ = 0.9. 

 

• The diagram at the right of figure 13.2 shows the values of V* for 

each state. For ex : consider the bottom right state in this diagram. 
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• The value of V* for this state is 100 because the optimal policy in 

this state selects the "move up" action that receives immediate 

reward 100. 

 

• Similarly, the value of V* for the bottom center state is 90. 

 

• This is because the optimal policy will move the agent from this 

state to the right (generating an immediate reward of zero), then 

upward (generating an immediate reward of 100). 

 

• Thus, the discounted future reward from the bottom center state is 
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Q Learning 
 

• How can an agent learn an optimal policy 𝝅* for an arbitrary 

environment? 

 

• It is difficult to learn the function 𝝅* ∶ 𝑺 → 𝑨 directly, because the 

available training data does not provide training examples of the 

form <s, a> . 

 

• Instead, the only training information available to the learner is the 

sequence of immediate rewards r(si,ai) for i = 0, 1,2,3…. 

 

• One of the choice for evaluation function the agent should attempt 

to learn is V*. 

 

• The agent should prefer state sl over state s2 whenever V*(s1) 

>V*(s2), because the cumulative future reward will be greater from 

s1. 
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• Of course the agent's policy must choose among actions, not among 

states. It can use V* in certain settings to choose among actions as 

well. 

 

• The optimal action in state s is the action a that maximizes the sum 

of the immediate reward r(s,a) plus the value V* of the immediate 

successor state, discounted by γ. 

 

 

 

 

• Thus, the agent can acquire the optimal policy by learning V*, 

provided it has perfect knowledge of the immediate reward function 

r and the state transition function 𝜹. 

 

• Unfortunately, learning V* is a useful way to learn the optimal 

policy only when the agent has perfect knowledge of 𝜹 and r. 

 

 

Eqn 13.3 
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• This requires that it be able to perfectly predict the immediate result 

(i.e., the immediate reward and immediate successor) for every 

possible state-action transition. 

 

• In many practical problems, such as robot control, it is impossible 

for the agent or its human programmer to predict in advance the 

exact outcome of applying an arbitrary action to an arbitrary state. 

 

• In cases where either 𝜹 or r is unknown, learning V* is unfortunately 

of no use for selecting optimal actions because the agent cannot 

evaluate Eqn 13.3. 

 

• Now we should go for the evaluation function that is applicable for 

more general setting. 
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The Q Function 

 

• Let us define the evaluation function Q(s,a) so that its value is the 

maximum discounted cumulative reward that can be achieved 

starting from state s and applying action a as the first action. 

 

• In other words, the value of Q is the reward received immediately 

upon executing action a from state s, plus the value (discounted by 

     γ) of following the optimal policy thereafter. 

 

 

 

 

• Note that Q(s,a) is exactly the quantity that is maximized in Eqn 

13.3 in order to choose the optimal action a in state s. 

 

• Therefore, we can rewrite Eqn 13.3 in terms of Q(s,a) as 

 

 

Eqn 13.4 
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• This shows that if the agent learns the Q function instead of the V* 

function, it will be able to select optimal actions even when it has no 

knowledge of the functions r and 𝜹. 

 

• As Eqn 13.5 makes clear, it need only consider each available 

action a in its current state s and choose the action that maximizes 

Q(s,a). 

 

• Here the surprising fact is that one can choose globally optimal 

action sequences by reacting repeatedly to the local values of Q for 

the current state. 

 

• This means the agent can choose the optimal action without ever 

conducting a lookahead search to explicitly consider what state 

results from the action. 

Eqn 13.5 
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• To illustrate, figure 13.2 shows the Q values for every state and 

action in the simple grid world. 

 

• Notice that the Q value for each state-action transition equals the r 

value for this transition plus the V* value for the resulting state 

discounted by γ.  

 

•  The optimal policy shown in the figure 13.2 corresponds to 

selecting actions with maximal Q values. 
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An Algorithm for Learning Q 

 

• Learning the Q function corresponds to learning the optimal policy. 

 

• The key problem is finding a reliable way to estimate training 

values for Q, given only a sequence of immediate rewards r spread 

out over time. 

 

• This can be accomplished through iterative approximation. 

 

• The close relationship between Q and V*  can be expressed as 

 

 

  

     which allows rewriting Eqn 13.4 as 

 
Eqn 13.6 
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• This recursive definition of Q provides the basis for algorithms that 

iteratively approximate Q (Watkins 1989). 

 

• To describe the algorithm, we will use the symbol 𝑸  to refer to the 

learner's estimate, or hypothesis, of the actual Q function. 

 

• In this algorithm the learner represents its hypothesis 𝑸  by a large 

table with a separate entry for each state-action pair. 

 

• The table entry for the pair <s,a> stores the value for 𝑸 (s,a) -

learner's current hypothesis about the actual but unknown value Q(s, 

a). 

 

• The table can be initially filled with random values (though it is 

easier to understand the algorithm if one assumes initial values of 

     zero). 
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• The agent repeatedly observes its current state s, chooses some 

action a, executes this action, then observes the resulting reward r = 

r(s,a) and the new state s' = 𝜹(s, a). 

 

• It then updates the table entry for 𝑸 (s,a) following each such 

transition, according to the rule: 

 

 

 

 

• Note this training rule uses the agent's current 𝑸  values for the new 

state s' to refine its estimate of 𝑸 (s,a), for the previous state s. 

 

• Although Eqn13.6 describes Q in terms of the functions 𝜹(s,a) and 

r(s,a), the agent does not need to know these general functions to 

apply the training rule of Eqn 13.7. 

 

Eqn 13.7 
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• Instead it executes the action in its environment and then observes 

the resulting new state s' and reward r. 

 

• Thus, it can be viewed as sampling these functions at the current 

values of s and a. 

 

• The Q learning algorithm for deterministic Markov decision 

processes is described in the Table 13.1. 

 

• Using this algorithm the agent's estimate 𝑸  converges in the limit to 

the actual Q function, provided the system can be modeled as a 

deterministic Markov decision process, the reward function r is 

bounded, and actions are chosen so that every state-action pair is 

visited infinitely often. 
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Q learning algorithm 

For each s,a initialize the table entry 𝑸 (s,a) to zero. 

Observe the current state s 

Do forever: 

• Select an action a and execute it 

• Receive immediate reward r 

• Observe the new state s' 

• Update the table entry for 𝑸 (s,a)  as follows: 

      

 

• s ⃪ s' 

Table 13.1:  Q Learning Algorithm, assuming deterministic rewards and actions 
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An Illustrative Example 

 

• To illustrate the operation of the Q learning algorithm, consider a 

single action taken by an agent, and the corresponding refinement to 

     𝑸  as shown in the figure 13.3. 

 

• In this example, the agent moves one cell to the right in its grid 

world and receives an immediate reward of zero for this transition. 

 

• It then applies the training rule of Eqn 13.7 to refine its estimate 𝑸  

for the state-action transition it just executed. 

 

• According to the training rule, the new Q estimate for this transition 

    is the sum of the received reward (zero) and the highest Q value  

    associated with the resulting state (100), discounted by γ(0.9). 
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Figure 13.3:The update to 𝑄  after executing a single action 
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• Each time the agent moves forward from an old state to a new one, 

Q learning propagates 𝑸  estimates backward from the new state to 

the old. 

 

• At the same time, the immediate reward received by the agent for 

the transition is used to augment these propagated values of 𝑸 . 

 

• Consider applying this algorithm to the grid world and reward 

function shown in figure 13.2, for which the reward is zero 

everywhere, except when entering the goal state. 

 

• Since this world contains an absorbing goal state, we will assume 

that training consists of a series of episodes. 

 

• During each episode, the agent begins at some randomly chosen 

state and is allowed to execute actions until it reaches the absorbing 

goal state. 
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• When it does, the episode ends and the agent is transported to a new, 

randomly chosen, initial state for the next episode. 

 

• The values of 𝑸  evolve as the Q learning algorithm is applied in the 

following way: 

 

 With all the 𝑸  values initialized to zero, the agent will make no 

changes to any Q table entry until it happens to reach the goal 

state and receive a nonzero reward. 

 

 This will result in refining the 𝑸  value for the single transition 

leading into the goal state. 

 

 On the next episode, if the agent passes through this state 

adjacent to the goal state, its nonzero 𝑸   value will allow 

refining the value for some transition two steps from the goal, 

and so on. 
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 Given a sufficient number of training episodes, the information 

will propagate from the transitions with nonzero reward back 

through the entire state-action space available to the agent, 

resulting eventually in a 𝑸  table containing the Q values shown 

in figure 13.2. 

 

• The two general properties of Q learning algorithm that hold for any 

deterministic MDP in which the rewards are non-negative, assuming 

we initialize all 𝑸  values to zero. 

i. The first property is that under these conditions the 𝑸  values 

never decrease during training. 

 More formally, let 𝑸 n(s,a) denote the learned 𝑸 (s,a) value 

after the nth iteration of the training procedure then  
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ii. A second general property that holds under these same 

conditions is that throughout the training process every 𝑸  

value will remain in the interval between zero and its true Q 

value. 
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Convergence 

 

• Will Q Learning algorithm converge toward a 𝑸  equal to the true  

Q function?       

 

•  The answer is yes, under following conditions: 

i. First, we must assume the system is a deterministic MDP. 

 

ii. Second, we must assume the immediate reward values are 

bounded; i.e., there exists some positive constant c such that 

for all states s and actions a, |r(s, a)| < c. 

 

iii. Third, we assume the agent selects actions in such a fashion 

that it visits every possible state-action pair infinitely often. 

 

• By this third condition we mean that if action a is a legal action 

from state s, then over time the agent must execute action a from 
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    state s repeatedly and with nonzero frequency as the length of its  

    action sequence approaches infinity. 

 

• These conditions are also restrictive in that they require the agent to 

visit every distinct state-action transition infinitely often. This is a 

very strong assumption in large (or continuous!) domains. 

 

• The key idea underlying the proof of convergence is that the table 

entry 𝑸 (s,a) with the largest error must have its error reduced by a 

factor of γ whenever it is updated. 

 

Theorem 13.1: Convergence of Q learning for deterministic Markov 

decision processes. 

 

• Consider a Q learning agent in a deterministic MDP with bounded 

rewards (∀ s,a), |r(s, a)| ≤ c . 
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• The Q learning agent uses the training rule of Eqn 13.7, initializes 

its 𝑸 (s,a) table to arbitrary finite values, and uses a discount factor γ 

such that 0 < γ  < 1  
 

• Let 𝑸 𝒏(s,a) denote the agent's hypothesis 𝑸 (s,a), following the nth 

update. If each state-action pair is visited infinitely often, then 

𝑸 𝒏(s,a) converges to Q(s,a) as n→∞, for all s,a. 

 

Proof:  

 

• Since each state-action transition occurs infinitely often, consider 

consecutive intervals during which each state-action transition 

occurs at least once. 

 

• The proof consists of showing that the maximum error over all 

entries in the Q table is reduced by at least a factor of γ during each 

such interval. 
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• 𝑸 n is the agent's table of estimated Q values after n updates. Let  ∆n 

be the maximum error in Qn, i.e.,  

 

 

 

 

• We use s' to denote 𝜹(s,a). Now for any table entry 𝑸 𝒏(s,a) that is 

updated on iteration (n+1), the magnitude of the error in the revised 

estimate 𝑸 n+1(s,a) is 
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• Therefore,  

 

 

 

• We use following factors while deriving the equation 

 

 For any two functions f1 and f2 the following inequality holds 

 

 

 

 

 We introduce a new variable s" over which the maximization is 

performed. 

 

• This is legitimate because the maximum value will be at least as 

great when we allow this additional variable to vary. 
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• Thus, the updated 𝑸 n+1(s,a) for any s,a is at most γ times the 

maximum error in the 𝑸 n, table, An. 

 

• The largest error in the initial table, ∆0, is bounded because values 

𝑸 0(s,a) of and Q(s,a) are bounded for all s, a . 

 

• Now after the first interval during which each s,a is visited, the 

largest error in the table will be at most γ∆0 . 

 

• After k such intervals, the error will be at most γ𝒌∆0 . Since each 

state is visited infinitely often, the number of such intervals is 

infinite and ∆n→ 0 as n → ∞. 

 

• This proves the theorem. 
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Experimentation Strategies 

 

• The Q learning algorithm stated earlier does not specify how actions 

are chosen by the agent. 

 

• One obvious strategy would be for the agent in state s to select 

action a that maximizes 𝑸 (s,a) thereby exploiting its current 

approximation 𝑸 . 

 

• However, with this strategy the agent runs the risk that it will 

overcommit to actions that are found during early training to have 

high 𝑸  values, while failing to explore other actions that have even 

higher values.   

 

• For this reason, it is common in Q learning to use a probabilistic 

approach to selecting actions. 
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• Actions with higher 𝑸  values are assigned higher probabilities, but 

every action is assigned a nonzero probability.  

 

• One way to assign such probabilities is 

 

 

 

      

 

     where, 

     P(ai/s) is the probability of selecting action ai, given that the agent  

     is in state s  

  

     k>0 is a constant that determines how strongly the selection favors  

     actions with high 𝑸   values. 
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• Larger values of k will assign higher probabilities to actions with 

above average 𝑸 , causing the agent to exploit what it has learned 

and seek actions it believes will maximize its reward. 

 

• In contrast, small values of k will allow higher probabilities for 

other actions, leading the agent to explore actions that do not 

currently have high 𝑸  values. 
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Updating Sequence 

 

• One important implication of the convergence theorem is that Q 

learning need not train on optimal action sequences in order to 

converge to the optimal policy. 

 

• In fact, it can learn the Q function (and hence the optimal policy) 

while training from actions chosen completely at random at each 

step, as long as the resulting training sequence visits every state-

action transition infinitely often. 

 

• This fact suggests changing the sequence of training example 

transitions in order to improve training efficiency without 

endangering final convergence. 
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• Consider again learning in an MDP with a single absorbing goal 

state. Assume as before that we train the agent with a sequence of 

episodes. For each episode, the agent is placed in a random initial 

state and is allowed to perform actions and to update its 𝐐  table 

until it reaches the absorbing goal state. 

 

• A new training episode is then begun by removing the agent from 

the goal state and placing it at a new random initial state. 

 

• If we begin with all 𝐐  values initialized to zero, then after the first 

full episode only one entry in the agent's 𝐐  table will have been 

changed: the entry corresponding to the final transition into the goal 

state. 

 

• If the agent happens to follow the same sequence of actions from 

the same random initial state in its second full episode, then a 

second table entry would be made nonzero, and so on. 
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• If we run repeated identical episodes in this fashion, the frontier of 

nonzero 𝐐  values will creep backward from the goal state at the rate 

of one new state-action transition per episode. 

 

Approaches for faster convergence 

 

• Now consider training on these same state-action transitions, but in 

     reverse chronological order for each episode.  

 

• That is, we apply the same update rule from Eqn 13.7 for each 

transition considered, but perform these updates in reverse order. 

 

• In this case, after the first full episode the agent will have updated 

     its 𝐐  estimate for every transition along the path it took to the goal. 

 

• This training process will clearly converge in fewer iterations, 

although it requires that the agent use more memory to store the 
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    entire episode before beginning the training for that episode. 

 

• A second strategy for improving the rate of convergence is to store 

past state-action transitions, along with the immediate reward that 

was received, and retrain on them periodically. 

 

• Although at first it might seem a waste of effort to retrain on the 

same transition, recall that the updated 𝑸 (s,a)  value is determined 

     by the values 𝑸 (s',a) of the successor state s' = 𝜹(s,a). 

 

• Therefore, if subsequent training changes one of the 𝑸 (s,a) values, 

then retraining on the transition <s,a> may result in an altered value 

for 𝑸 (s,a). 

 

• In general, the degree to which we wish to replay old transitions 

versus obtain new ones from the environment depends on the 

relative costs of these two operations in the specific problem 

domain. 


