
INSTANCE-BASED

LEARNING

---Tejaswini H, Dept of CSE

Module 5

 In contrast to learning methods that construct a general,

explicit description of the target function when training

examples are provided, instance-based learning

methods simply store the training examples.

 Generalizing beyond these examples is postponed until a new

instance must be classified.

 Each time a new query instance is encountered, its

relationship to the previously stored examples is examined in

order to assign a target function value for the new instance.

 Instance-based learning includes nearest neighbor and locally

weighted regression methods that assume instances can be

represented as points in a Euclidean space. It also includes case-

based reasoning methods that use more complex, symbolic

representations for instances.

 Instance-based methods are sometimes referred to as "lazy"

learning methods because they delay processing until a new

instance must be classified.

 A key advantage of this kind of delayed, or lazy, learning is that

instead of estimating the target function once for the entire

instance space, these methods can estimate it locally and

differently for each new instance to be classified.

8.1 INTRODUCTION

 Instance-based learning methods such as nearest

neighbor and locally weighted regression are

conceptually straightforward approaches to

approximating real-valued or discrete-valued target

functions.

 Learning in these algorithms consists of simply storing

the presented training data.

 When a new query instance is encountered, a set of

similar related instances is retrieved from memory and

used to classify the new query instance

 One key difference between these approaches and the methods

discussed in other chapters is that instance-based approaches can

construct a different approximation to the target function for each

distinct query instance that must be classified.

disadvantages
 the cost of classifying new instances can be high.

 This is due to the fact that nearly all computation takes place at

classification time rather than when the training examples are first

encountered.

 Therefore, techniques for efficiently indexing training examples are a

significant practical issue in reducing the computation required at

query time.

 they typically consider all attributes of the instances when

attempting to retrieve similar training examples from memory.

 If the target concept depends on only a few of the many available

attributes, then the instances that are truly most "similar" may well

be a large distance apart.

8.2 k-NEAREST NEIGHBOR LEARNING

 The most basic instance-based method is the k-NEAREST

NEIGHBOR LEARNING algorithm.

 This algorithm assumes all instances correspond to points in

the n-dimensional space .

 The nearest neighbors of an instance are defined in terms of

the standard Euclidean distance.

 More precisely, let an arbitrary instance x be described by the

feature vector

 In nearest-neighbor learning the target function may be

either discrete-valued or real-valued.

 Let us first consider learning discrete-valued target

functions of the form f : V, where V is the finite set

{v1, . . . vs}.

 The k-NEAREST NEIGHBOR algorithm for

approximating a discrete-valued target function is given

in Table 8.1.

 As shown there, the value 𝑓 (xq) returned by this algorithm as its

estimate of f(xq) is just the most common value of f among the k

training examples nearest to xq.

 If we choose k = 1, then the 1-NEAREST NEIGHBOR algorithm

assigns to 𝑓 (xq) the value f(xi) where xi is the training instance nearest

to xq

 For larger values of k, the algorithm assigns the most common

value among the k nearest training examples.

 Figure 8.1 illustrates the operation of the k-NEAREST

NEIGHBOR algorithm for the case where the instances are

points in a two-dimensional space and where the target

function is boolean valued.

 The positive and negative training examples are shown by

"+" and "-“ respectively.

 A query point xq
is shown as well. Note the 1-NEAREST

NEIGHBOR algorithm classifies xq
 as a positive example in

this figure, whereas the 5-NEAREST NEIGHBOR algorithm

classifies it as a negative example.

 Note the k-NEAREST NEIGHBOR algorithm never forms an

explicit general hypothesis 𝑓 regarding the target function f .

 It simply computes the classification of each new query instance

as needed.

 Nevertheless, we can still ask what the implicit general

function is, or what classifications would be assigned if we were

to hold the training examples constant and query the algorithm

with every possible instance in X.

 The diagram on the right side of Figure 8.1 shows the shape of this

decision surface induced by 1-NEAREST NEIGHBOR over the

entire instance space.

 The decision surface is a combination of convex polyhedra

surrounding each of the training examples.

 For every training example, the polyhedron indicates the set of query

points whose classification will be completely determined by that

training example.

 Query points outside the polyhedron are closer to some other

training example.

 This kind of diagram is often called the Voronoi diagram of the

set of training examples.

8.2.1 Distance-Weighted NEAREST NEIGHBOR Algorithm

 One obvious refinement to the k-NEAREST NEIGHBOR

Algorithm is to weight the contribution of each of the

k neighbors according to their distance to the query point

xq giving greater weight to closer neighbors.

 For example, in the algorithm of Table 8.1, which

approximates discrete-valued target functions, we might

weight the vote of each neighbor according to the inverse

square of its distance from xq.

 Note all of the above variants of the k-NEAREST

NEIGHBOR Algorithm consider only the k nearest

neighbors to classify the query point.

 Once we add distance weighting, there is really no harm

in allowing all training examples to have an influence on

the classification of the xq because very distant examples

will have very little effect on 𝑓 (xq) .

 The only disadvantage of considering all examples is that our

classifier will run more slowly.

 If all training examples are considered when classifying a new

query instance, we call the algorithm a global method.

 If only the nearest training examples are considered, we call

it a local method.

 When the rule in Equation (8.4) is applied as a global

method, using all training examples, it is known as Shepard's

method (Shepard 1968).

8.2.2 Remarks on k-NEAREST NEIGHBOR Algorithm

 The distance-weighted k-NEAREST NEIGHBOR Algorithm

is a highly effective inductive inference method for many

practical problems.

 It is robust to noisy training data and quite effective when it

is provided a sufficiently large set of training data.

 Note that by taking the weighted average of the k neighbors

nearest to the query point, it can smooth out the impact of

isolated noisy training examples.

curse of dimensionality

 One practical issue in applying k-NEAREST NEIGHBOR

Algorithms is that the distance between instances is

calculated based on all attributes of the instance (i.e., on all

axes in the Euclidean space containing the instances).

 This lies in contrast to methods such as rule and decision tree

learning systems that select only a subset of the instance

attributes when forming the hypothesis.

 To see the effect of this policy, consider applying k-NN to a

problem in which each instance is described by 20 attributes, but

where only 2 of these attributes are relevant to determining the

classification for the particular target function.

 In this case, instances that have identical values for the 2 relevant

attributes may nevertheless be distant from one another in the 20-

dimensional instance space.

 As a result, the similarity metric used by k-NN—depending on all

20 attributes-will be misleading.

 The distance between neighbors will be dominated by the

large number of irrelevant attributes. This difficulty, which

arises when many irrelevant attributes are present, is

sometimes referred to as the curse of dimensionality.

 Nearest-neighbor approaches are especially sensitive to this

problem.

 One interesting approach to overcoming this problem is to weight

each attribute differently when calculating the distance between

two instances.

 This corresponds to stretching the axes in the Euclidean space,

shortening the axes that correspond to less relevant attributes, and

lengthening the axes that correspond to more relevant attributes.

The amount by which each axis should be stretched can be

determined automatically using a cross-validation approach.

 To see how, first note that we wish to stretch (multiply) the jth axis by

some factor zj, where the values z1 . . . zn are chosen to minimize the

true classification error of the learning algorithm. Second, note that

this true error can be estimated using crossvalidation.

 Hence, one algorithm is to select a random subset of the available data

to use as training examples, then determine the values of z1 . . . zn that

lead to the minimum error in classifying the remaining examples.

 By repeating this process multiple times the estimate for these

weighting factors can be made more accurate. This process of

stretching the axes in order to optimize the performance of k-NN

provides a mechanism for suppressing the impact of irrelevant

attributes.

 An even more drastic alternative is to completely eliminate

the least relevant attributes from the instance space. This is

equivalent to setting some of the zi scaling factors to zero.

 Moore and Lee (1994) discuss efficient cross-validation

methods for selecting relevant subsets of the attributes for k-

NN algorithms.

 In particular, they explore methods based on leave-one-

out crossvalidation, in which the set of m training

instances is repeatedly divided into a training set of size m -

1 and test set of size 1, in all possible ways.

 This leave-one out approach is easily implemented in k-NN

algorithms because no additional training effort is required each

time the training set is redefined.

 Note both of the above approaches can be seen as stretching each

axis by some constant factor.

 Alternatively, we could stretch each axis by a value that varies over

the instance space.

 However, as we increase the number of degrees of freedom

available to the algorithm for redefining its distance metric in such

a fashion, we also increase the risk of overfitting. Therefore, the

approach of locally stretching the axes is much less common.

 One additional practical issue in applying k-NN is efficient
memory indexing.

 Because this algorithm delays all processing until a new query
is received, significant computation can be required to
process each new query.

 One such indexing method is the kd-tree (Bentley 1975;
Friedman et al. 1977), in which instances are stored at the
leaves of a tree, with nearby instances stored at the same or
nearby nodes.

 The internal nodes of the tree sort the new query xq to the
relevant leaf by testing selected attributes of xq.

8.3 LOCALLY WEIGHTED REGRESSION

 The nearest-neighbor approaches described in the previous

section can be thought of as approximating the target

function f (x) at the single query point x = xq.

 Locally weighted regression is a generalization of this

approach.

 It constructs an explicit approximation to f over a local

region surrounding xq.

 Locally weighted regression uses nearby or distance-

weighted training examples to form this local approximation

to f.

 For example, we might approximate the target function in the

neighborhood surrounding xq, using a linear function, a quadratic

function, a multilayer neural network, or some other functional

form.

 The phrase "locally weighted regression" is called

 local because the function is approximated based only on data near

the query point,

 weighted because the contribution of each training example is

weighted by its distance from the query point, and

 regression because this is the term used widely in the statistical

learning community for the problem of approximating real-valued

functions.

8.3.1 Locally Weighted Linear

Regression

 Criterion two is perhaps the most esthetically pleasing

because it allows every training example to have an

impact on the classification of xq.

 However, this approach requires computation that grows

linearly with the number of training examples.

 Criterion three is a good approximation to criterion two

and has the advantage that computational cost is

independent of the total number of training examples;

its cost depends only on the number k of neighbors

considered.

8.4 RADIAL BASIS FUNCTIONS

 One approach to function approximation that is closely

related to distance-weighted regression and also to artificial

neural networks is learning with radial basis functions

 In this approach, the learned hypothesis is a function of the

form

 The function given by Equation (8.8) can be viewed as

describing a two-layer network where the first layer of units

computes the values of the various Ku(d(xu, x)) and where

the second layer computes a linear combination of these first-

layer unit values.

 An example radial basis function (RBF) network is illustrated

in Figure 8.2.

 Given a set of training examples of the target function, RBF

networks are typically trained in a two-stage process.

 First, the number k of hidden units is determined and each

hidden unit u is defined by choosing the values of xu and σu
2 that

define its kernel function Ku(d(xu, x)).

 Second, the weights wu are trained to maximize the fit of the

network to the training data, using the global error criterion

given by Equation (8.5).

 Because the kernel functions are held fixed during this

second stage, the linear weight values wu can be trained very

efficiently.

 To summarize, radial basis function networks provide a global
approximation to the target function, represented by a linear
combination of many local kernel functions.

 The value for any given kernel function is non-negligible only
when the input x falls into the region defined by its particular
center and width.

 Thus, the network can be viewed as a smooth linear combination
of many local approximations to the target function.

 One key advantage to RBF networks is that they can be trained
much more efficiently than feedforward networks trained with
BACKPROPAGATION. This follows from the fact that the input
layer and the output layer of an RBF are trained separately.

8.5 CASE-BASED REASONING

 Instance-based methods such as k-NN and locally weighted

regression share three key properties.

 First, they are lazy learning methods in that they defer the

decision of how to generalize beyond the training data until a

new query instance is observed.

 Second, they classify new query instances by analyzing similar

instances while ignoring instances that are very different from

the query.

 Third, they represent instances as real-valued points in an n-

dimensional Euclidean space.

 Case-based reasoning (CBR) is a learning paradigm based on

the first two of these principles, but not the third.

 In CBR, instances are typically represented using more rich

symbolic descriptions, and the methods used to retrieve

similar instances are correspondingly more elaborate.

 CBR has been applied to problems such as conceptual design

of mechanical devices based on a stored library of previous

designs (Sycara et al. 1992), reasoning about new legal cases

based on previous rulings (Ashley 1990), and solving

planning and scheduling problems by reusing and combining

portions of previous solutions to similar problems (Veloso

1992).

 Let us consider a prototypical example of a case-based reasoning
system to ground our discussion. T

 The CADET system (Sycara et al. 1992) employs casebased
reasoning to assist in the conceptual design of simple mechanical
devices such as water faucets.

 It uses a library containing approximately 75 previous designs and
design fragments to suggest conceptual designs to meet the
specifications of new design problems. Each instance stored in
memory (e.g., a water pipe) is represented by describing both its
structure and its qualitative function.

 New design problems are then presented by specifying the desired
function and requesting the corresponding structure. This problem
setting is illustrated in Figure 8.3.

 The top half of the figure shows the description of a typical stored
case called a T-junction pipe.

 Its function is represented in terms of the qualitative relationships
among the waterflow levels and temperatures at its inputs and
outputs.

 In the functional description at its right, an arrow with a "+" label
indicates that the variable at the arrowhead increases with the
variable at its tail.

 For example, the output waterflow Q3 increases with increasing
input waterflow Ql.

 a "-" label indicates that the variable at the head decreases with the
variable at the tail.

 The bottom half of this figure depicts a new design problem described
by its desired function.

 This particular function describes the required behavior of one type of
water faucet.
 Qc refers to the flow of cold water into the faucet,
 Qh to the input flow of hot water, and
 Qm to the single mixed flow out of the faucet.
 Similarly, Tc, Th, and Tm refer to the temperatures of the cold water, hot

water, and mixed water respectively.
 The variable Ct denotes the control signal for temperature that is input to

the faucet, and
 Cf denotes the control signal for waterflow.

 Note the description of the desired function specifies that these controls
Ct and Cf are to influence the water flows Qc and Qh, thereby indirectly
influencing the faucet output flow Qm and temperature Tm.

 Given this functional specification for the new design

problem, CADET searches its library for stored cases whose

functional descriptions match the design problem.

 If an exact match is found, indicating that some stored case

implements exactly the desired function, then this case can

be returned as a suggested solution to the design problem.

 If no exact match occurs, CADET may find cases that match

various subgraphs of the desired functional specification.

 In Figure 8.3, for example, the T-junction function matches a

subgraph of the water faucet function graph.

 More generally, CADET searches for subgraph isomorphisms

between the two function graphs, so that parts of a case can

be found to match parts of the design specification.

 Furthermore, the system may elaborate the original function

specification graph in order to create functionally equivalent

graphs that may match still more cases.

 It uses general knowledge about physical influences to create

these elaborated function graphs.

 For example, it uses a rewrite rule that allows it to rewrite

the influence

 This rewrite rule can be interpreted as stating that if B must

increase with A, then it is sufficient to find some other

quantity x such that B increases with x, and x increases with

A.

 Here x is a universally quantified variable whose value is

bound when matching the function graph against the case

library.

 In fact, the function graph for the faucet shown in Figure 8.3

is an elaboration of the original - functional specification

produced by applying such rewrite rules.

21-11-2019 Machine Learning-15CS73 1

Machine Learning-Module 5

Reinforcement Learning

Mr. Manoj T

Assistant Professor,

Department of CSE

21-11-2019 Machine Learning-15CS73 2

Chapter 13: Reinforcement Learning

Basics of Reinforcement Learning

• Reinforcement learning addresses the question of how an

autonomous agent that senses and acts in its environment can

learn to choose optimal actions to achieve its goals.

• This very generic problem covers tasks such as learning to

control a mobile robot, learning to optimize operations in

factories, and learning to play board games.

• Each time the agent performs an action in its environment, a

trainer may provide a reward or penalty to indicate the

desirability of the resulting state.

21-11-2019 Machine Learning-15CS73 3

• For ex : when training an agent to play a game the trainer might

provide a positive reward when the game is won, negative reward

when it is lost, and zero reward in all other states.

• The task of the agent is to learn from this indirect, delayed

reward, to choose sequences of actions that produce the greatest

cumulative reward.

21-11-2019 Machine Learning-15CS73 4

Introduction

• Consider building a learning robot. The robot, or agent, has a set

of sensors to observe the state of its environment, and a set of

actions it can perform to alter this state.

• For ex : a mobile robot may have sensors such as a camera and

sonars and actions such as “move forward” and “turn”.

• Its task is to learn a control strategy, or policy, for choosing

actions that achieve its goals.

• For ex : the robot may have a goal of docking onto its battery

charger whenever its battery level is low.

21-11-2019 Machine Learning-15CS73 5

• We assume that the goals of the agent can be defined by a reward

function that assigns a numerical value-an immediate payoff-to

each distinct action the agent may take from each distinct state.

• For ex : the goal of docking to the battery charger can be captured

by assigning a positive reward(+100) to state-action transitions

and a reward of zero to every other state-action transition.

• This reward function may be built into the robot, or known only

to an external teacher who provides the reward value for each

action performed by the robot.

• The task of the robot is to perform sequences of actions, observe

their consequences, and learn a control policy.

21-11-2019 Machine Learning-15CS73 6

• The control policy we desire is one that, from any initial state,

chooses actions that maximize the reward accumulated over time

by the agent.

• This general setting for robot learning is summarized in figure

13.1.

• It is very much apparent from the figure 13.1 that the problem of

learning a control policy to maximize cumulative reward is very

general and covers many problems beyond robot learning tasks

such as manufacturing optimization problems, sequential

scheduling problems such as choosing which taxis to send for

passengers in a large city.

21-11-2019 Machine Learning-15CS73 7

Figure 13.1: An agent interacting with its environment

21-11-2019 Machine Learning-15CS73 8

• In general, we are interested in any type of agent that must learn

to choose actions that alter the state of its environment and

where a cumulative reward function is used to define the quality

of any given action sequence.

• Within this class of problems, the actions may have deterministic

or nondeterministic outcomes. In case of a non-deterministic

outcomes, the learner lacks a domain theory that describes the

outcomes of its actions.

• One of the highly successful application of the reinforcement

learning algorithms is in game-playing problem. Tesauro (1995)

describes the TD-GAMMON program which has used

reinforcement learning to become a world-class backgammon

player.

21-11-2019 Machine Learning-15CS73 9

• The problem of learning a control policy to choose actions is similar

in some respects to the function approximation problems discussed

problems earlier.

• The target function to be learned in this case is a control policy,

𝝅: 𝑺 → 𝑨 that outputs an appropriate action a from the set A, given

the current state s from the set S.

• However, this reinforcement learning problem differs from other

function approximation tasks in several important respects.

 Delayed Reward:

 The task of the agent is to learn a target function 𝝅 that maps

from the current state s to the optimal action a = 𝝅(s).

 In other learning methods, each training example would be a

pair of the form <s, 𝝅(s)>.

21-11-2019 Machine Learning-15CS73 10

 In reinforcement learning, however, training information is

not available in this form.

 Instead, the trainer provides only a sequence of immediate

reward values as the agent executes its sequence of actions.

 The agent, therefore, faces the problem of temporal credit

assignment: determining which of the actions in its

sequence are to be credited with producing the eventual

rewards.

 Exploration:

 In reinforcement learning, the agent influences the

distribution of training examples by the action sequence it

chooses.

 This raises the question of which experimentation strategy

produces most effective learning.

21-11-2019 Machine Learning-15CS73 11

 The learner faces a tradeoff in choosing whether to favor

exploration of unknown states and actions (to gather new

information), or exploitation of states and actions that it has

already learned will yield high reward(to maximize its

cumulative reward).

 Partially observable states:

 It is convenient to assume that the agent's sensors can

perceive the entire state of the environment at each time

step, in many practical situations sensors provide only partial

information.

 For ex : a robot with a forward-pointing camera cannot see

what is behind it.

 In such cases, it may be necessary for the agent to consider

its previous observations together with its current sensor

data

21-11-2019 Machine Learning-15CS73 12

 when choosing actions, and the best policy may be one that

 chooses actions specifically to improve the observability of

 the environment.

 Life-long Learning:

 Unlike isolated function approximation tasks, robot learning

 often requires that the robot learn several related tasks

 within the same environment, using the same sensors.

 For ex : a mobile robot may need to learn how to dock on its

battery charger, how to navigate through narrow corridors,

and how to pick up output from laser printers.

 This setting raises the possibility of using previously

obtained experience or knowledge to reduce sample

complexity when learning new tasks.

21-11-2019 Machine Learning-15CS73 13

The Learning Task

• Here we will formulate the problem of learning sequential control

strategies more precisely.

• There are many ways to do so. For ex:

 We might assume the agent's actions are deterministic or that

they are nondeterministic.

 We might assume that the agent can predict the next state that

will result from each action, or that it cannot.

 We might assume that the agent is trained by an expert who

shows it examples of optimal action sequences, or that it must

train itself by performing actions of its own choice.

21-11-2019 Machine Learning-15CS73 14

• Let us consider the quite general formulation of the problem, based

on Markov Decision Processes(MDP).

• The formulation of the problem is given in Eqn 13.1

• In a Markov decision process (MDP) the agent can perceive a set S

of distinct states of its environment and has a set A of actions that it

can perform.

• At each discrete time step t, the agent senses the current state st,

chooses a current action at, and performs it.

Eqn 13.1

21-11-2019 Machine Learning-15CS73 15

• The environment responds by giving the agent a reward rt =r(st,at)

and by producing the succeeding state st+l = 𝜹(st,at).

• Here the functions 𝜹 and r are part of the environment and are not

necessarily known to the agent.

• In an MDP, the functions 𝜹(st,at) and r(st,at) depend only on the

current state and action, and not on earlier states or actions.

• Here we consider only the case in which S and A are finite.

Learning by agent

• The task of the agent is to learn a policy, 𝝅 : S → A, for selecting its

next action at based on the current observed state st; i.e: 𝝅(st) = at.

21-11-2019 Machine Learning-15CS73 16

• One obvious approach is to require the policy that produces the

greatest possible cumulative reward for the robot over time.

• To state this requirement more precisely, we define the cumulative

value V𝝅(st) achieved by following an arbitrary policy 𝝅 from an

 arbitrary initial state st is as given in Eqn 13.1

• Eqn 13.1 gives following information

 The sequence of rewards rt+i is generated by beginning at state st

and by repeatedly using the policy 𝝅 to select actions(at = 𝜋(st),

 at+l = 𝜋(st+1) etc)

 Here 0 <γ< 1 is a constant that determines the relative value of

delayed versus immediate rewards.

• In particular, rewards received i time steps into the future are

discounted exponentially by a factor of γi.

21-11-2019 Machine Learning-15CS73 17

• The quantity V𝝅 (s) defined by Eqn 13.1 is often called the

discounted cumulative reward achieved by policy 𝝅 from initial

state s.

• It is reasonable to discount future rewards relative to immediate

rewards because, in many cases, we prefer to obtain the reward

sooner rather than later.

• There are alternative ways to calculate the cumulative rewards.

They are:

 The finite horizon reward 𝒓𝒕 + 𝒊
𝒉
𝒊=𝟎 considers the

undiscounted sum of rewards over a finite number h of steps.

 The average reward 𝒍𝒊𝒎
𝒉 →∞

𝟏

𝒉
 𝒓𝒕 + 𝒊

𝒉
𝒊=𝟎 which considers

 the average reward per time step over the entire lifetime of the

 agent.

21-11-2019 Machine Learning-15CS73 18

• We require that the agent learn a policy 𝝅 that maximizes V𝝅(s) for

all states s.

• We will call such a policy an optimal policy and denote it by 𝝅
∗

• To simplify notation, we will refer to the value function V𝝅*(s) of

such an optimal policy as V*(s).

• V*(s) gives the maximum discounted cumulative reward that the

 agent can obtain starting from state s by following the optimal

 policy

Eqn 13.2

21-11-2019 Machine Learning-15CS73 19

Illustration of learning task through Grid World Environment

• Consider a simple grid-world environment is depicted in the

topmost diagram of figure 13.2.

• The six grid squares in this diagram represent six possible states, or

locations, for the agent.

• Each arrow in the diagram represents a possible action the agent can

take to move from one state to another.

• The number associated with each arrow represents the immediate

reward r(s,a) the agent receives if it executes the corresponding

state-action transition.

• The immediate reward in this particular environment is defined to

be zero for all state-action transitions except for those leading into

the state labeled G

21-11-2019 Machine Learning-15CS73 20

Figure 13.2: A simple deterministic world to illustrate the basic concepts of Q-learning

21-11-2019 Machine Learning-15CS73 21

• It is convenient to think of the state G as the goal state, because the

only way the agent can receive reward, in this case, is by entering

this state.

• In this particular environment, the only action available to the agent

once it enters the state G is to remain in this state. For this reason,

we call G an absorbing state.

• Once the states, actions, and immediate rewards are defined, and

once we choose a value for the discount factor γ, we can determine

the optimal policy 𝝅* and its value function V*(s).

• In this case, let us choose γ = 0.9.

• The diagram at the right of figure 13.2 shows the values of V* for

each state. For ex : consider the bottom right state in this diagram.

21-11-2019 Machine Learning-15CS73 22

• The value of V* for this state is 100 because the optimal policy in

this state selects the "move up" action that receives immediate

reward 100.

• Similarly, the value of V* for the bottom center state is 90.

• This is because the optimal policy will move the agent from this

state to the right (generating an immediate reward of zero), then

upward (generating an immediate reward of 100).

• Thus, the discounted future reward from the bottom center state is

21-11-2019 Machine Learning-15CS73 23

Q Learning

• How can an agent learn an optimal policy 𝝅* for an arbitrary

environment?

• It is difficult to learn the function 𝝅* ∶ 𝑺 → 𝑨 directly, because the

available training data does not provide training examples of the

form <s, a> .

• Instead, the only training information available to the learner is the

sequence of immediate rewards r(si,ai) for i = 0, 1,2,3….

• One of the choice for evaluation function the agent should attempt

to learn is V*.

• The agent should prefer state sl over state s2 whenever V*(s1)

>V*(s2), because the cumulative future reward will be greater from

s1.

21-11-2019 Machine Learning-15CS73 24

• Of course the agent's policy must choose among actions, not among

states. It can use V* in certain settings to choose among actions as

well.

• The optimal action in state s is the action a that maximizes the sum

of the immediate reward r(s,a) plus the value V* of the immediate

successor state, discounted by γ.

• Thus, the agent can acquire the optimal policy by learning V*,

provided it has perfect knowledge of the immediate reward function

r and the state transition function 𝜹.

• Unfortunately, learning V* is a useful way to learn the optimal

policy only when the agent has perfect knowledge of 𝜹 and r.

Eqn 13.3

21-11-2019 Machine Learning-15CS73 25

• This requires that it be able to perfectly predict the immediate result

(i.e., the immediate reward and immediate successor) for every

possible state-action transition.

• In many practical problems, such as robot control, it is impossible

for the agent or its human programmer to predict in advance the

exact outcome of applying an arbitrary action to an arbitrary state.

• In cases where either 𝜹 or r is unknown, learning V* is unfortunately

of no use for selecting optimal actions because the agent cannot

evaluate Eqn 13.3.

• Now we should go for the evaluation function that is applicable for

more general setting.

21-11-2019 Machine Learning-15CS73 26

The Q Function

• Let us define the evaluation function Q(s,a) so that its value is the

maximum discounted cumulative reward that can be achieved

starting from state s and applying action a as the first action.

• In other words, the value of Q is the reward received immediately

upon executing action a from state s, plus the value (discounted by

 γ) of following the optimal policy thereafter.

• Note that Q(s,a) is exactly the quantity that is maximized in Eqn

13.3 in order to choose the optimal action a in state s.

• Therefore, we can rewrite Eqn 13.3 in terms of Q(s,a) as

Eqn 13.4

21-11-2019 Machine Learning-15CS73 27

• This shows that if the agent learns the Q function instead of the V*

function, it will be able to select optimal actions even when it has no

knowledge of the functions r and 𝜹.

• As Eqn 13.5 makes clear, it need only consider each available

action a in its current state s and choose the action that maximizes

Q(s,a).

• Here the surprising fact is that one can choose globally optimal

action sequences by reacting repeatedly to the local values of Q for

the current state.

• This means the agent can choose the optimal action without ever

conducting a lookahead search to explicitly consider what state

results from the action.

Eqn 13.5

21-11-2019 Machine Learning-15CS73 28

• To illustrate, figure 13.2 shows the Q values for every state and

action in the simple grid world.

• Notice that the Q value for each state-action transition equals the r

value for this transition plus the V* value for the resulting state

discounted by γ.

• The optimal policy shown in the figure 13.2 corresponds to

selecting actions with maximal Q values.

21-11-2019 Machine Learning-15CS73 29

An Algorithm for Learning Q

• Learning the Q function corresponds to learning the optimal policy.

• The key problem is finding a reliable way to estimate training

values for Q, given only a sequence of immediate rewards r spread

out over time.

• This can be accomplished through iterative approximation.

• The close relationship between Q and V* can be expressed as

 which allows rewriting Eqn 13.4 as

Eqn 13.6

21-11-2019 Machine Learning-15CS73 30

• This recursive definition of Q provides the basis for algorithms that

iteratively approximate Q (Watkins 1989).

• To describe the algorithm, we will use the symbol 𝑸 to refer to the

learner's estimate, or hypothesis, of the actual Q function.

• In this algorithm the learner represents its hypothesis 𝑸 by a large

table with a separate entry for each state-action pair.

• The table entry for the pair <s,a> stores the value for 𝑸 (s,a) -

learner's current hypothesis about the actual but unknown value Q(s,

a).

• The table can be initially filled with random values (though it is

easier to understand the algorithm if one assumes initial values of

 zero).

21-11-2019 Machine Learning-15CS73 31

• The agent repeatedly observes its current state s, chooses some

action a, executes this action, then observes the resulting reward r =

r(s,a) and the new state s' = 𝜹(s, a).

• It then updates the table entry for 𝑸 (s,a) following each such

transition, according to the rule:

• Note this training rule uses the agent's current 𝑸 values for the new

state s' to refine its estimate of 𝑸 (s,a), for the previous state s.

• Although Eqn13.6 describes Q in terms of the functions 𝜹(s,a) and

r(s,a), the agent does not need to know these general functions to

apply the training rule of Eqn 13.7.

Eqn 13.7

21-11-2019 Machine Learning-15CS73 32

• Instead it executes the action in its environment and then observes

the resulting new state s' and reward r.

• Thus, it can be viewed as sampling these functions at the current

values of s and a.

• The Q learning algorithm for deterministic Markov decision

processes is described in the Table 13.1.

• Using this algorithm the agent's estimate 𝑸 converges in the limit to

the actual Q function, provided the system can be modeled as a

deterministic Markov decision process, the reward function r is

bounded, and actions are chosen so that every state-action pair is

visited infinitely often.

21-11-2019 Machine Learning-15CS73 33

Q learning algorithm

For each s,a initialize the table entry 𝑸 (s,a) to zero.

Observe the current state s

Do forever:

• Select an action a and execute it

• Receive immediate reward r

• Observe the new state s'

• Update the table entry for 𝑸 (s,a) as follows:

• s ⃪ s'

Table 13.1: Q Learning Algorithm, assuming deterministic rewards and actions

21-11-2019 Machine Learning-15CS73 34

An Illustrative Example

• To illustrate the operation of the Q learning algorithm, consider a

single action taken by an agent, and the corresponding refinement to

 𝑸 as shown in the figure 13.3.

• In this example, the agent moves one cell to the right in its grid

world and receives an immediate reward of zero for this transition.

• It then applies the training rule of Eqn 13.7 to refine its estimate 𝑸

for the state-action transition it just executed.

• According to the training rule, the new Q estimate for this transition

 is the sum of the received reward (zero) and the highest Q value

 associated with the resulting state (100), discounted by γ(0.9).

21-11-2019 Machine Learning-15CS73 35

Figure 13.3:The update to 𝑄 after executing a single action

21-11-2019 Machine Learning-15CS73 36

• Each time the agent moves forward from an old state to a new one,

Q learning propagates 𝑸 estimates backward from the new state to

the old.

• At the same time, the immediate reward received by the agent for

the transition is used to augment these propagated values of 𝑸 .

• Consider applying this algorithm to the grid world and reward

function shown in figure 13.2, for which the reward is zero

everywhere, except when entering the goal state.

• Since this world contains an absorbing goal state, we will assume

that training consists of a series of episodes.

• During each episode, the agent begins at some randomly chosen

state and is allowed to execute actions until it reaches the absorbing

goal state.

21-11-2019 Machine Learning-15CS73 37

• When it does, the episode ends and the agent is transported to a new,

randomly chosen, initial state for the next episode.

• The values of 𝑸 evolve as the Q learning algorithm is applied in the

following way:

 With all the 𝑸 values initialized to zero, the agent will make no

changes to any Q table entry until it happens to reach the goal

state and receive a nonzero reward.

 This will result in refining the 𝑸 value for the single transition

leading into the goal state.

 On the next episode, if the agent passes through this state

adjacent to the goal state, its nonzero 𝑸 value will allow

refining the value for some transition two steps from the goal,

and so on.

21-11-2019 Machine Learning-15CS73 38

 Given a sufficient number of training episodes, the information

will propagate from the transitions with nonzero reward back

through the entire state-action space available to the agent,

resulting eventually in a 𝑸 table containing the Q values shown

in figure 13.2.

• The two general properties of Q learning algorithm that hold for any

deterministic MDP in which the rewards are non-negative, assuming

we initialize all 𝑸 values to zero.

i. The first property is that under these conditions the 𝑸 values

never decrease during training.

 More formally, let 𝑸 n(s,a) denote the learned 𝑸 (s,a) value

after the nth iteration of the training procedure then

21-11-2019 Machine Learning-15CS73 39

ii. A second general property that holds under these same

conditions is that throughout the training process every 𝑸

value will remain in the interval between zero and its true Q

value.

21-11-2019 Machine Learning-15CS73 40

Convergence

• Will Q Learning algorithm converge toward a 𝑸 equal to the true

Q function?

• The answer is yes, under following conditions:

i. First, we must assume the system is a deterministic MDP.

ii. Second, we must assume the immediate reward values are

bounded; i.e., there exists some positive constant c such that

for all states s and actions a, |r(s, a)| < c.

iii. Third, we assume the agent selects actions in such a fashion

that it visits every possible state-action pair infinitely often.

• By this third condition we mean that if action a is a legal action

from state s, then over time the agent must execute action a from

21-11-2019 Machine Learning-15CS73 41

 state s repeatedly and with nonzero frequency as the length of its

 action sequence approaches infinity.

• These conditions are also restrictive in that they require the agent to

visit every distinct state-action transition infinitely often. This is a

very strong assumption in large (or continuous!) domains.

• The key idea underlying the proof of convergence is that the table

entry 𝑸 (s,a) with the largest error must have its error reduced by a

factor of γ whenever it is updated.

Theorem 13.1: Convergence of Q learning for deterministic Markov

decision processes.

• Consider a Q learning agent in a deterministic MDP with bounded

rewards (∀ s,a), |r(s, a)| ≤ c .

21-11-2019 Machine Learning-15CS73 42

• The Q learning agent uses the training rule of Eqn 13.7, initializes

its 𝑸 (s,a) table to arbitrary finite values, and uses a discount factor γ

such that 0 < γ < 1

• Let 𝑸 𝒏(s,a) denote the agent's hypothesis 𝑸 (s,a), following the nth

update. If each state-action pair is visited infinitely often, then

𝑸 𝒏(s,a) converges to Q(s,a) as n→∞, for all s,a.

Proof:

• Since each state-action transition occurs infinitely often, consider

consecutive intervals during which each state-action transition

occurs at least once.

• The proof consists of showing that the maximum error over all

entries in the Q table is reduced by at least a factor of γ during each

such interval.

21-11-2019 Machine Learning-15CS73 43

• 𝑸 n is the agent's table of estimated Q values after n updates. Let ∆n

be the maximum error in Qn, i.e.,

• We use s' to denote 𝜹(s,a). Now for any table entry 𝑸 𝒏(s,a) that is

updated on iteration (n+1), the magnitude of the error in the revised

estimate 𝑸 n+1(s,a) is

21-11-2019 Machine Learning-15CS73 44

• Therefore,

• We use following factors while deriving the equation

 For any two functions f1 and f2 the following inequality holds

 We introduce a new variable s" over which the maximization is

performed.

• This is legitimate because the maximum value will be at least as

great when we allow this additional variable to vary.

21-11-2019 Machine Learning-15CS73 45

• Thus, the updated 𝑸 n+1(s,a) for any s,a is at most γ times the

maximum error in the 𝑸 n, table, An.

• The largest error in the initial table, ∆0, is bounded because values

𝑸 0(s,a) of and Q(s,a) are bounded for all s, a .

• Now after the first interval during which each s,a is visited, the

largest error in the table will be at most γ∆0 .

• After k such intervals, the error will be at most γ𝒌∆0 . Since each

state is visited infinitely often, the number of such intervals is

infinite and ∆n→ 0 as n → ∞.

• This proves the theorem.

21-11-2019 Machine Learning-15CS73 46

Experimentation Strategies

• The Q learning algorithm stated earlier does not specify how actions

are chosen by the agent.

• One obvious strategy would be for the agent in state s to select

action a that maximizes 𝑸 (s,a) thereby exploiting its current

approximation 𝑸 .

• However, with this strategy the agent runs the risk that it will

overcommit to actions that are found during early training to have

high 𝑸 values, while failing to explore other actions that have even

higher values.

• For this reason, it is common in Q learning to use a probabilistic

approach to selecting actions.

21-11-2019 Machine Learning-15CS73 47

• Actions with higher 𝑸 values are assigned higher probabilities, but

every action is assigned a nonzero probability.

• One way to assign such probabilities is

 where,

 P(ai/s) is the probability of selecting action ai, given that the agent

 is in state s

 k>0 is a constant that determines how strongly the selection favors

 actions with high 𝑸 values.

21-11-2019 Machine Learning-15CS73 48

• Larger values of k will assign higher probabilities to actions with

above average 𝑸 , causing the agent to exploit what it has learned

and seek actions it believes will maximize its reward.

• In contrast, small values of k will allow higher probabilities for

other actions, leading the agent to explore actions that do not

currently have high 𝑸 values.

21-11-2019 Machine Learning-15CS73 49

Updating Sequence

• One important implication of the convergence theorem is that Q

learning need not train on optimal action sequences in order to

converge to the optimal policy.

• In fact, it can learn the Q function (and hence the optimal policy)

while training from actions chosen completely at random at each

step, as long as the resulting training sequence visits every state-

action transition infinitely often.

• This fact suggests changing the sequence of training example

transitions in order to improve training efficiency without

endangering final convergence.

21-11-2019 Machine Learning-15CS73 50

• Consider again learning in an MDP with a single absorbing goal

state. Assume as before that we train the agent with a sequence of

episodes. For each episode, the agent is placed in a random initial

state and is allowed to perform actions and to update its 𝐐 table

until it reaches the absorbing goal state.

• A new training episode is then begun by removing the agent from

the goal state and placing it at a new random initial state.

• If we begin with all 𝐐 values initialized to zero, then after the first

full episode only one entry in the agent's 𝐐 table will have been

changed: the entry corresponding to the final transition into the goal

state.

• If the agent happens to follow the same sequence of actions from

the same random initial state in its second full episode, then a

second table entry would be made nonzero, and so on.

21-11-2019 Machine Learning-15CS73 51

• If we run repeated identical episodes in this fashion, the frontier of

nonzero 𝐐 values will creep backward from the goal state at the rate

of one new state-action transition per episode.

Approaches for faster convergence

• Now consider training on these same state-action transitions, but in

 reverse chronological order for each episode.

• That is, we apply the same update rule from Eqn 13.7 for each

transition considered, but perform these updates in reverse order.

• In this case, after the first full episode the agent will have updated

 its 𝐐 estimate for every transition along the path it took to the goal.

• This training process will clearly converge in fewer iterations,

although it requires that the agent use more memory to store the

21-11-2019 Machine Learning-15CS73 52

 entire episode before beginning the training for that episode.

• A second strategy for improving the rate of convergence is to store

past state-action transitions, along with the immediate reward that

was received, and retrain on them periodically.

• Although at first it might seem a waste of effort to retrain on the

same transition, recall that the updated 𝑸 (s,a) value is determined

 by the values 𝑸 (s',a) of the successor state s' = 𝜹(s,a).

• Therefore, if subsequent training changes one of the 𝑸 (s,a) values,

then retraining on the transition <s,a> may result in an altered value

for 𝑸 (s,a).

• In general, the degree to which we wish to replay old transitions

versus obtain new ones from the environment depends on the

relative costs of these two operations in the specific problem

domain.

