
Module 4: Chapter 6 

Bayesian Learning 



1. Introduction 

• A probabilistic approach to inference  

▫ It is based on the assumption that the quantities of 
interest are governed by probability  distributions and 
that optimal decisions can be made by reasoning about 
these probabilities together with observed data. 



• Quantitative approach to weighing the evidence 
supporting alternative hypotheses 

• Important 

▫ Calculates the explicit probability like naïve Bayes.  

 Naive Bayes classifier competitive, outperforms as a 
classifier  

▫ They help Understand learning algorithms that do 
not explicitly manipulate probabilities  
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• Bayesian learning methods are relevant to our study of machine 

learning for two different reasons. 

 

i. Bayesian learning algorithms that calculate explicit 

probabilities for hypotheses, such as the naive Bayes 

classifier, are among the most practical approaches to 

certain types of learning problems. 
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 For ex : Michie et al.(1994) provide a detailed study 

comparing the naive Bayes classifier to other learning 

algorithms, including decision tree and neural network 

algorithms. 

 

 These researchers show that the naive Bayes classifier is 

competitive with these other learning algorithms in many 

cases and that in some cases it outperforms these other 

methods. 

 

ii. The Bayesian methods are important to our study of 

machine learning is that they provide a useful perspective 

for understanding many learning algorithms that do not 

explicitly manipulate probabilities. 

 

 

 



17-10-2019 Machine Learning-
15CS73 

6 

 For ex : We will analyze the algorithms such as the FIND-

S and Candidate-Elimination algorithms to determine the 

conditions under which they output the most probable 

hypothesis given the training data. 

 

 Bayesian analysis provides an opportunity for the 

choosing the appropriate alternative error function(cross 

entropy) in neural network learning algorithms. 

 

 We use a Bayesian perspective to analyze the inductive 

bias of decision tree learning algorithms that favor short 

decision trees and examine the closely related Minimum 

Description Length principle.  



Feature of Bayesian learning methods 

include: 
• Each observed training example can incrementally decrease or 

increase the estimated probability that a hypothesis is correct. This 
provides a more flexible approach to the learning compared to the 
algorithms that completely eliminate a hypothesis if it is found to 
be inconsistent with any single example. 
 

• Prior knowledge can be combined with observed data to determine 
the final probability of a hypothesis. The prior probability is got 
through (i) a prior probability of each candidate hypothesis (ii) a 
probability distribution over observed data for each possible 
hypothesis. 
 

• Bayesian methods can accommodate hypotheses that make 
probabilistic predictions For ex : hypotheses such as “this 
pneumonia patient has a 93% chance of complete recovery”   
 



• New instances can be classified by combining the 

predictions of multiple hypotheses, weighted by their 

probabilities. 

 

• Even in cases where Bayesian methods prove 

computationally intractable, they can provide a 

standard of optimal decision making against which 

other practical methods can be measured. 

 

 



Difficulty of applying Bayesian method 

• Bayesian methods typically require initial knowledge of many 

probabilities. 

• The significant computational cost required to determine the 

Bayes optimal hypothesis in the general case. 

 

 



2. BAYES THEOREM 

• Determining the most (best) hypothesis from some 
space H, (having initial prior probabilities of various 
hypotheses ) given the observed training data D. 

• Calculates the probability of a hypothesis based on its 
prior probability, the probabilities of observing 
various data given the hypothesis, and the observed 
data itself. 



 



 



 



 



 



 



 



 



Notation 

• P(h)   : initial probability that hypothesis h holds, before 
we have observed the training data. prior probability 
of h and may reflect any background knowledge we have 
about the chance that h is a correct hypothesis. 

• P(D) : prior probability that training data D will be 
observed-no knowledge of h 

• P(D|h) : probability of observing data D in which 
hypothesis h holds.  

• P(h|D) : probability that h holds given the observed 
training data D. posterior probability of h   reflects 
the influence of the training data D 

 



 



• The learner considers some set of candidate 
hypotheses H and is interested in finding the 
most probable hypothesis h ϵ H given the 

observed data D (or at least one of the 
maximally probable if there are several).  

• Any such maximally probable hypothesis is 
called a maximum a posteriori (MAP) 
hypothesis 



• We can determine the MAP hypotheses by using 
Bayes theorem to calculate the posterior 
probability of each candidate hypothesis. 



hMAP is a MAP hypothesis provided 



• In some cases, we will assume that every 
hypothesis in H is equally probable a priori 
(P(hi) = P(hj) for all hi and hj in H).  

• In this case we can further simplify Equation  
and need only consider the term P(D|h) to find 
the most probable hypothesis 



• P(D|h) is often called the likelihood of the data D given h 
• Any hypothesis that maximizes P(D|h) is called a 

maximum likelihood (ML) hypothesis, hML. 



 



Example: 

• To illustrate Bayes rule, consider a medical 
diagnosis problem in which there are two 
alternative hypotheses:  

(1) that the patient has a particular form of cancer 

(2) that the patient does not. 



• The available data is from a particular laboratory test 
with two possible outcomes: + (positive) and - 
(negative).  

• We have prior knowledge that over the entire population 
of people only .008 have this disease. 

• Furthermore, the lab test is only an imperfect indicator 
of the disease.  

• The test returns a correct positive result in only 98% of 
the cases in which the disease is actually present and a 
correct negative result in only 97% of the cases in which 
the disease is not present.  

• In other cases, the test returns the opposite result. 



 



 



• Suppose we now observe a new patient for whom the lab 
test returns a positive result.  

• Should we diagnose the patient as having cancer or not? 



3. BAYES THEOREM AND CONCEPT 

LEARNING 

• What is the relationship between Bayes theorem and the 
problem of concept learning? 

▫ Bayes theorem provides a principled way to calculate the 

posterior probability of each hypothesis given the 
training data 

▫ we can use it as the basis for a straightforward 
learning algorithm that calculates the probability for 
each possible hypothesis 

▫ then outputs the most probable. 



3.1 Brute-Force Bayes Concept 

Learning 
 



• Concept learning problem: 

▫ assume the learner considers some finite hypothesis space 
H  

▫ defined over the instance space X,  

▫ the task is to learn some target concept c : X -> {0,1}. 

▫ learner is given some sequence of training examples 
((x1,d1 ). . . (xm, dm))  



• We can design a straightforward concept 
learning algorithm to output the maximum a 
posteriori hypothesis, based on Bayes theorem. 



BRUTE-FORCE MAP LEARNING algorithm 



• what values are to be used for P(h) and for P(D|h) ? 

▫ choose the probability distributions P(h) and P(D|h) in 

any way you wish, to describe our prior knowledge 
about the learning task.  

▫ Here let us choose them to be consistent with the 
following assumptions: 

 1. The training data D is noise free (i.e., di = c(xi)). 

 2. The target concept c is contained in the hypothesis  
 space H 

 3. We have no a priori reason to believe that any 

 hypothesis is more probable than any other. 



• Given these assumptions, what values should we 
specify for P(h)?  

▫ Given no prior knowledge that one hypothesis is 
more likely than another, it is reasonable to assign 
the same prior probability to every  hypothesis h 
in H.  

▫ because we assume the target concept is contained 
in H we should require that these prior 
probabilities sum to 1.  



• Together these constraints imply that we should 
choose 

 



• What choice shall we make for P(D|h)? 

▫ P(D|h) is the probability of observing the target 
values D = (d1 . . dm) for the fixed set of  instances (x1 
. . . xm), given a world in which hypothesis h holds 
(i.e., given a world in which h is the correct description 
of the target concept c). 



• Since we assume noise-free training data, the 
probability of observing classification di , given 
h is  

▫ 1 if di = h(xi) and  

▫ 0 if di  ≠ h(xi) 



 

In other words, the probability of data D given hypothesis h is 1 if D is 
consistent with h, and 0 otherwise. 



• Given these choices for P(h) and  for P(D|h) we now 
have a fully-defined problem for the above BRUTE-
FORCE MAP LEARNING algorithm.  



• Step1 :  

▫ Let us consider the first step of this algorithm, 
which uses Bayes theorem to compute the 
posterior probability P(h|D) of each hypothesis h 
given the observed training data D. 

 



• Case 1 : h is inconsistent with the training data D.  

The posterior probability of a hypothesis inconsistent with D is 
zero. 



• Case 2: h is consistent with D.  

 



 



 



• The above analysis implies that under our choice for P(h) 
and P(D|h), every consistent hypothesis has posterior 
probability (1 /|VSH,D| ), and every inconsistent 
hypothesis has posterior probability 0.  

• Every consistent hypothesis is, therefore, a MAP 
hypothesis. 



3.2 MAP Hypotheses and Consistent 

Learners 

• Every hypothesis consistent with D is a MAP 
hypothesis 



consistent learners: 

• We will say that a learning algorithm is a consistent 
learner provided it outputs a hypothesis that commits 
zero errors over the training examples. 

• Given the above analysis, we can conclude that every 
consistent learner outputs a MAP hypothesis, if we 
assume  

▫ a uniform prior probability distribution over H (i.e., P(hi) 
= P(hj) for all i, j), and  

▫ deterministic, noise free training data (i.e., P(D|h) = 1 if D 
and h are consistent, and 0 otherwise). 



4. MAXIMUM LIKELIHOOD AND LEAST-

SQUARED ERROR HYPOTHESES 
 

• Let’s we consider the problem of learning a 
continuous-valued target function. 



• A straightforward Bayesian analysis will show 
that under certain assumptions any 
learning algorithm that minimizes the 
squared error between the output 
hypothesis predictions and the training 
data will output a maximum likelihood 
hypothesis. 



• Consider the following problem setting: 

• Learner L considers an instance space X and a 
hypothesis space H consisting of some class of 
real-valued functions defined over X (i.e., each h 
in H is a function of the form h : X  R, where R 
represents the set of real numbers). 



• The problem faced by L is to learn an unknown 
target function f : X  R drawn from H. 

• A set of m training examples is provided, where 
the target value of each example is corrupted by 
random noise drawn according to a Normal 
probability distribution. 



• More precisely, each training example is a pair 
of the form (xi, di) where  

  di = f (xi) + ei 

 

▫ f(xi) : the noise-free value of the target function  

▫ ei: is a random variable representing the noise. 



• It is assumed that the values of the ei are drawn 
independently and that they are distributed 
according to a Normal distribution with 
zero mean.  

• The task of the learner is to output a maximum 
likelihood hypothesis, or, equivalently, a MAP 
hypothesis assuming all hypotheses are equally 
probable a priori. 



2 basic concepts 

• probability densities  

• Normal distributions. 



• First, in order to discuss probabilities over 
continuous variables such as e,  we must 
introduce probability densities.  

• The reason, roughly, is that we wish for the total 
probability over all possible values of the 
random variable to sum to one.  



• In the case of continuous variables we cannot 
achieve this by assigning a finite probability to 
each of the infinite set of possible values for the 
random variable.  

• Instead, we speak of a probability density for 
continuous variables such as e and require that 
the integral of this probability density over all 
possible values be one. 

 



 



• Second, we stated that the random noise 
variable e is generated by a Normal probability 
distribution.  

• A Normal distribution is a smooth, bell-shaped 
distribution that can be completely characterized 
by its mean μ and its standard deviation σ. 



• Given this background we now return to the 
main issue:  

▫ showing that the least-squared error hypothesis is, 
in fact, the maximum likelihood hypothesis within 
our problem setting.  

• We will show this by deriving the maximum 
likelihood hypothesis, but using lower case p to 
refer to the probability density 



 



• we assume a fixed set of training instances  (x1, x2 . . . xm) 
and  

• Therefore consider the data D to be the corresponding 
sequence of target values D =  ( d1, d2 . . .dm).  

• Here di = f (xi) + ei. 



• Assuming the training examples are mutually 
independent given h,  

• we can write P(D|h) as the product of the various 
p(di|h) 



• Given that the noise ei obeys a Normal distribution with 
zero mean and unknown variance σ2 , each di must also 
obey a Normal distribution with variance σ2  centered 
around the true target value f(xi) rather than zero. 

• Therefore p(di |h) can be written as a Normal 
distribution with variance σ2  and mean μ = f (xi) 

 



 



 



• Thus, Equation shows that the maximum 
likelihood hypothesis hML  is the one that  
minimizes the sum of the squared errors 
between the observed training values di and the 
hypothesis predictions h(xi). 



• Limitations of this problem setting.  

▫ The above analysis considers noise only in the 
target value of the training example and does 
not consider noise in the attributes describing 
the instances themselves.  
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Chapter 6: Bayesian Learning 
 

Introduction 

 

• Bayesian reasoning provides a probabilistic approach to 

inference. 

 

• Bayesian learning methods are relevant to our study of machine 

learning for two different reasons. 

 

i. Bayesian learning algorithms that calculate explicit 

probabilities for hypotheses, such as the naive Bayes 

classifier, are among the most practical approaches to 

certain types of learning problems. 
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 For ex : Michie et al.(1994) provide a detailed study 

comparing the naive Bayes classifier to other learning 

algorithms, including decision tree and neural network 

algorithms. 

 

 These researchers show that the naive Bayes classifier is 

competitive with these other learning algorithms in many 

cases and that in some cases it outperforms these other 

methods. 

 

ii. The Bayesian methods are important to our study of 

machine learning is that they provide a useful perspective 

for understanding many learning algorithms that do not 

explicitly manipulate probabilities. 
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 For ex : We will analyze the algorithms such as the FIND-

S and Candidate-Elimination algorithms to determine the 

conditions under which they output the most probable 

hypothesis given the training data. 

 

 Bayesian analysis provides an opportunity for the 

choosing the appropriate alternative error function(cross 

entropy) in neural network learning algorithms. 

 

 We use a Bayesian perspective to analyze the inductive 

bias of decision tree learning algorithms that favor short 

decision trees and examine the closely related Minimum 

Description Length principle.  
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Features of Bayesian Learning methods 

 

• Each observed training example can incrementally decrease or 

increase the estimated probability that a hypothesis is correct. 

This provides a more flexible approach to the learning compared 

to the algorithms that completely eliminate a hypothesis if it is 

found to be inconsistent with any single example. 

 

• Prior knowledge can be combined with observed data to 

determine the final probability of a hypothesis. The prior 

probability is got through (i) a prior probability of each candidate 

hypothesis (ii) a probability distribution over observed data for 

each possible hypothesis. 

 

• Bayesian methods can accommodate hypotheses that make 

probabilistic predictions For ex : hypotheses such as “this 

pneumonia patient has a 93% chance of complete recovery”   
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• New instances can be classified by combining the predictions of 

multiple hypotheses, weighted by their probabilities. 

 

• Even in cases where Bayesian methods prove computationally 

intractable, they can provide a standard of optimal decision making 

against which other practical methods can be measured. 

 

Practical Difficulties in applying Bayesian Methods 

 

• Bayesian methods typically require initial knowledge of many 

probabilities. 

 

• The significant computational cost required to determine the Bayes 

optimal hypothesis in the general case. 
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Bayes Theorem 

 

• In machine learning we are interested in determining the best 

hypothesis from some space H, given the observed training data D. 

 

• Bayes theorem provides a way to calculate the probability of a 

hypothesis based on its prior probability, the probabilities of 

observing various data given the hypothesis, and the observed data 

itself. 

 

• To define Bayes theorem precisely, let us define the following 

notations 

 P(h)  denote the initial probability or prior probability that  

                hypothesis h holds. 

 P(D) – denote the prior probability that training data D will be  

                 observed. 
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 P(D/h) denote the probability of observing data D given some 

                   world in which hypothesis h holds. 

 P(h/D)  denote the posterior probability of h because it  

                    reflects our confidence that h holds after we have  

                    seen the training data D. 

 

• Bayes theorem is the cornerstone of Bayesian learning methods 

because it provides a way to calculate the posterior probability 

P(h/D) from the prior probability P(h), together with P(D) and 

P(D/h) 

 

𝑷 𝒉/𝑫 =
𝑷 𝑫/𝒉 𝑷(𝒉)

𝑷(𝑫)
  

 

• P(h/D) increases with P(h) and with P(D/h) according to Bayes 

theorem.       

Eqn 6.1 
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• It is also reasonable to see that P(h/D) decreases as P(D) increases, 

because the more probable it is that D will be observed 

independent of h, the less evidence D provides in support of h. 

 

• In many learning scenarios, the learner considers some set of 

candidate hypotheses H and is interested in finding the most 

probable hypothesis hH given the observed data D. 

 

• Any such maximally probable hypothesis is called a maximum a 

     posteriori (MAP) hypothesis. 

 

• We can determine the MAP hypotheses by using Bayes theorem to 

calculate the posterior probability of each candidate hypothesis. 

 

• More precisely, we will say that hMAP  is a MAP hypothesis 

provided: 
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• Notice in the final step above we dropped the term P(D) because it 

is a constant independent of h. 

 

• In some cases, we will assume that every hypothesis in H is equally 

probable a priori (P(hi) = P(hj) for all hi and hj in H). In this case 

we can further simplify Eqn 6.2 and need only consider the term 

P(D/h) to find the most probable hypothesis. 

 

 

Eqn 6.2 
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• P(D/h) is often called the likelihood of the data D given h, and any 

hypothesis that maximizes P(D/h) is called a maximum likelihood 

    (ML) hypothesis, hML 

 

 

 

 

 

 

• In order to make clear the connection to machine learning 

problems, we have learnt Bayes theorem above by referring to the 

data D as training examples of some target function and referring to 

H as the space of candidate target functions. 

 

 

 

 

 

 

Eqn 6.3 
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An Example 

 

• To illustrate Bayes rule, consider a medical diagnosis problem in 

which there are two alternative hypotheses: 

i. that the patient has a particular form of cancer 

ii. that the patient does not 

 

• The available data is from a particular laboratory test with two 

possible outcomes: ⊕ (positive) and ⊝ (negative). 

 

• We have prior knowledge that over the entire population of people 

only .008 have this disease. 

 

• The test returns a correct positive result in only 98% of the cases in 

which the disease is actually present and a correct negative result in 

only 97% of the cases in which the disease is not present. 
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• In other cases, the test returns the opposite result. 

 

• The above situation can be summarized by the following 

probabilities: 

 

 

 

 

 

• Suppose we now observe a new patient for whom the lab test 

returns a positive result. Should we diagnose the patient as having 

cancer or not? 

 

• The maximum a posteriori hypothesis can be found using Eqn 6.2: 

     P(cancer/⊕) = P(⊕/cancer) P(cancer) = 0.98 * 0.008= 0.0078 

    P(¬cancer/⊕) = P(⊕/¬cancer) P(¬cancer) = 0.03* 0.992=0.0298 
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• Thus, hMAP = ¬cancer 
 

• Notice that while the posterior probability of cancer is significantly 

higher than its prior probability, the most probable hypothesis is 

still that the patient does not have cancer. 

 

• As this example illustrates, the result of Bayesian inference 

depends strongly on the prior probabilities, which must be 

available in order to apply the method directly. 

 

• Basic formulas for calculating probabilities are summarized in 

Table 6.1. 
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Table 6.1: Summary of basic probability formulas 
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Bayes Theorem and Concept Learning 
 

• Consider the concept learning problem in which we assume that 

learner considers some finite hypothesis space H defined over the 

instance space X, in which the task is to learn some target concept 

     c:X→{0,1}. 

 

• Let us assume that the learner is given some sequence of training 

examples <<x1,d1>…<xm,dm>>  where xi is some instance from X 

and where di is the target value of xi (i.e., di=c(xi)). 
 

• To understand in very simple way, let us make one more 

assumption that the sequence of instances <xl . . . xm> is held 

fixed, so that the training data D can be written simply as the 

sequence of target values D = <dl . . . dm>. 
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• Thus, we can design a straightforward concept learning algorithm 

to output the maximum a posteriori hypothesis, based on Bayes 

theorem, as follows:  

 

Brute-Force MAP Learning Algorithm 

 

1. For each hypothesis h in H, calculate the posterior probability 

 

 

 

2. Output the hypothesis hMAP with the highest posterior probability 

 

 

This algorithm may require significant computation, because it applies 

Bayes theorem to each hypothesis in H to calculate P(h/D). 
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• In order to specify  a learning problem for the Brute-force MAP 

learning algorithm we must specify what values are to be used for 

P(h) and for P(D/h). 

 

• Let us choose them to be consistent with the following 

assumptions: 

i. The training data D is noise free (i.e., di = c(xi)).  

ii. The target concept c is contained in the hypothesis space H. 

iii. We have no a priori reason to believe that any hypothesis is 

more probable than any other.  

 

• Given these assumptions, we specify the value for P(h) in the 

following way 

 Given no prior knowledge that one hypothesis is more likely 

than another, it is reasonable to assign the same prior 

probability to every hypothesis h in H. 
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 Furthermore, because we assume the target concept is 

contained in H we should require that these prior probabilities 

sum to 1. 

 

 Together these constraints imply that we should choose 

 

 

 

• The value for P(D/h) can be specified in the following way: 

 

 P(D/h) is the probability of observing the target values D = <dl 

. . .dm> for the fixed set of instances <x1 . . . xm> given a world 

in which hypothesis h holds. 

 

 Since we assume noise-free training data, the probability of 

observing classification di given h is just 1 if di = h(xi) and 0 if 

di ≠ h(xi) 



11-11-2019 Machine Learning-15CS73 20 

 Therefore, 

 

 

 

 

• Given these choices for P(h) and for P(D/h) we now have a fully-

defined problem for the above Brute-Force MAP learning 

algorithm. 

 

• Now, let us consider the first step of this algorithm, which uses 

Bayes theorem to compute the posterior probability P(h/D) of each 

hypothesis h given the observed training data D. 

 

• Recalling Bayes theorem, we have  

      

Eqn 6.4 
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• Case 1: Consider where h is inconsistent with the training data D 

 

 Since Eqn 6.4 defines P(D/h) to be 0 when h is inconsistent 

with D, we have 

 

 

 

     The posterior probability of a hypothesis inconsistent with D is  

     zero. 

 

• Case 2:Consider the case where h is consistent with D.  

 

 Since Eqn 6.4 defines P(D/h) to be 1 when h is consistent with 

D, we have 
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where VSH,D is the subset of hypotheses from H that are consistent 

with D. 
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Verification of the value P(D)= 
|𝑽𝑺𝑯

.
𝑫
|

|𝑯|
  for concept learning 

• It is easy to verify that P(D)= 
|𝑽𝑺𝑯

.
𝑫
|

|𝑯|
 , because the sum over all 

hypotheses of P(h/D) must be one and because the number of 

hypotheses from H consistent with D is by definition |VSH,D| 

 

• Alternatively, we can derive P(D) from the theorem of total 

probability and the fact that the hypotheses are mutually exclusive 

(i.e., (∀i ≠ j)(P(hi ˄ hj) = 0)) 
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• To summarize, Bayes theorem implies that the posterior probability 

P(h/D) under our assumed P(h) and P(D/h) is 

 

 

 

 

 

     where |VSH,D| is the number of hypotheses from H consistent with  

     D. 

 

• The evolution of probabilities associated with hypotheses is 

depicted schematically in figure 6.1. Initially figure 6.1(a) shows 

all hypotheses have the same probability. As the training data 

accumulates (figure 6.1(b) & figure 6.1(c)) the posterior probability 

for inconsistent hypotheses becomes zero while the total 

probability summing to one is shared equally among the remaining 

consistent hypotheses.  

      

Eqn 6.5 
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Figure 6.1: Evolution of posterior probabilities P(h/D) with increasing training data 
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MAP Hypotheses and Consistent Learners 

 

• Given the above analysis, every consistent learner outputs a MAP 

hypothesis, if we assume a uniform prior probability distribution 

over H (i.e., P(hi) = P(hj) for all i, j), and if we assume 

deterministic, noise free training data (i.e., P(D/h) = 1 if D and h 

are consistent, and 0 otherwise). 

 

• For ex : 

  Consider the Find-S concept learning algorithm. The Find-S 

searches the  hypothesis space H from specific to general 

hypotheses, outputting a maximally specific consistent 

hypothesis. 

 

 Because FIND-S outputs a consistent hypothesis, we know that 

it will output a MAP hypothesis under the probability 

distributions P(h) and P(D/h) defined. 

 

 

      



11-11-2019 Machine Learning-15CS73 27 

 Actually, FIND-S does not explicitly manipulate probabilities 

at all-it simply outputs a maximally specific member of the 

version space. 

 

 However, by identifying distributions for P(h) and P(D/h) 

under which its output hypotheses will be MAP hypotheses, we 

have a useful way of characterizing the behavior of FIND-S. 

 

• Are there other probability distributions for P(h) and P(D/h) 

under which FIND-S outputs MAP hypotheses? 

 

 Yes. Because FIND-S outputs a maximally specific hypothesis 

from the version space, its output hypothesis will be a MAP 

hypothesis relative to any prior probability distribution that 

favors more specific hypotheses. 
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 More precisely, suppose H  is any probability distribution P(h) 

over H that assigns P(h1) ≥ P(h2) if hl is more specific than h2. 

 

 Then it can be shown hat FIND-S outputs a MAP hypothesis 
assuming the prior distribution H  and the same distribution 

P(D/h) 

 

• To summarize, the Bayesian framework allows one way to 

characterize the behavior of learning algorithms (e.g., FIND-S), 

even when the learning algorithm does not explicitly manipulate 

probabilities.  
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Definitions of various Probability Terms 

 

Random Variable: A random variable, usually written X, is a 

variable whose possible values are numerical outcomes of a random 

phenomenon.  
 
There are two types of random variables, discrete and continuous.  

 

For ex :  Random variable can be defined for a coin flip as follows 

               X = 
𝟏 𝒊𝒇 𝒊𝒕 𝒊𝒔 𝒉𝒆𝒂𝒅
𝟎 𝒊𝒇 𝒊𝒕 𝒊𝒔 𝒕𝒂𝒊𝒍

 

 

Discrete Random Variable : The variables which can take 

distinct/separate values are called discrete random variables. 

 

For ex : Flipping a fair coin, rolling a dice  
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Continuous Random Variable : The variables which can take any 

values in a range are called continuous random variables. 

 

For ex : Height and Weight of the person, Mass of an animal 

 

Probability Distribution : It is a mathematical function that provides 

the probabilities of occurrence of different possible outcomes in an 

experiment. 

 

Constructing a probability distribution for random variable 

 

• Let us take random variable,  

     X = no of heads after 3 flips of a fair coin 

  

• Then the probability distribution table can be written as follows: 
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Outcomes 

(No of Heads) 

X=0 X=1 X=2 X=3 

Probability 1/8 3/8 3/8 1/8 
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Maximum Likelihood and Least Squared Error 

Hypotheses  

 

• Many learning approaches such as neural network learning, linear 

regression and polynomial curve fitting will face a problem of 

learning a continuous-valued target function. 

 

• A straightforward Bayesian analysis will show that under certain 

assumptions any learning algorithm that minimizes the squared 

error between the output hypothesis predictions and the training 

data will output a maximum likelihood hypothesis.    

 

• Consider the following problem setting. Learner L considers an 

instance space X and a hypothesis space H consisting of some class 

of real-valued functions defined over X. (i.e., each h in H is a 

function of the form h:X → ℝ, where ℝ represents the set of real 

numbers). 
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• The problem faced by L is to learn an unknown target function f : 

X → ℝ drawn from H. 

 

• A set of m training examples is provided, where the target value of 

each example is corrupted by random noise drawn according to a 

Normal probability distribution. 

 

• More precisely, each training example is a pair of the form <xi, di> 

where di = f (xi) + ei. Here f(xi) is the noise-free value of the target 

function and ei is a random variable representing the noise. 

 

• It is assumed that the values of the ei are drawn independently and 

    that they are distributed according to a Normal distribution with  

    zero mean. 

 

• The task of the learner is to output a maximum likelihood 

hypothesis, or, equivalently, a MAP hypothesis assuming all 

hypotheses are equally probable a priori. 
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•  As a simple example of such a problem is learning a linear 

function, though our analysis applies to learning arbitrary real-

valued functions. 

 

• The figure 6.2 illustrates a linear target function f depicted by the 

solid line, and a set of noisy training examples of this target 

function. 

 

• The dashed line corresponds to the hypothesis hML with least-

squared training error, hence the maximum likelihood hypothesis. 

 

•  The maximum likelihood hypothesis is not necessarily identical to 

the correct hypothesis, f, because it is inferred from only a limited 

sample of noisy training data. 
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Figure 6.2 :Learning a real-valued function. The target function f corresponds to the 

solid line. The training examples (xi, di) are assumed to have Normally distributed 

noise ei with zero mean added to the true target value f(xi). The dashed line 

corresponds to the linear function that minimizes the sum of squared errors. 
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Review of Basic Concepts from Probability Theory 

 

Probability Density Function 

• In order to know probabilities over continuous variables such as e, 

we must know about probability densities. 

 

• The reason, roughly, is that we wish for the total probability over 

all possible values of the random variable to sum to one. 

 

Definition : A probability density function (PDF), or density of a 

continuous random variable, is a function that describes the relative 

likelihood for this random variable to take on a given value. 

 

• In the case of continuous variables we cannot achieve this by 

assigning a finite probability to each of the infinite set of possible 

values for the random variable. 
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• Instead, we take a probability density for continuous variables such 

as e and require that the integral of this probability density over all 

possible values be one. 

 

• In general we will use lower case p to refer to the probability 

density function, to distinguish it from a finite probability P. 

 

• The probability density p(x0) is the limit as 𝜖 goes to zero, of 
𝟏

𝝐
 times 

the probability that x will take on a value in the interval [x0,x0+𝝐) 

 

• The probability density function is  
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Normal Distribution 

 

• A Normal distribution is a smooth, bell-shaped distribution that can 

be completely characterized by its mean  and its standard deviation 

     . 

 

• A Normal distribution (also called a Gaussian distribution) is  

defined by the probability density function 

 

 

 

    A Normal distribution is fully determined by two parameters in the  

    above formula:  and  

 

• If the random variable X follows a normal distribution, then: 
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 The probability that X will fall into the interval (a,b) is given by 

         𝒑 𝒙 𝒅𝒙
𝒃

𝒂
 

 The expected, or mean value of X, E[X], is 

         E[X] =  

 The variance of X, Var(X), is 

        Var(X) = 2 

 The standard deviation of X, X,  is 

         x =  
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Prove that Least Squared Hypothesis is Maximum Likelihood 

Hypothesis 

 

• We will show this by deriving the maximum likelihood hypothesis 

starting with our earlier definition Eqn 6.3 but using lower case p to 

refer to the probability density 

 

 

 

• We assume a fixed set of training instances <xl . . . xm> and 

therefore consider the data D to be the corresponding sequence of 

target values D = <d1 . . .dm>. Here di = f(xi)+ei. 

 

• Assuming the training examples are mutually independent given h, 

we can write P(D/h) as the product of the various p(di/h) 
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• Given that the noise ei obeys a Normal distribution with zero mean 

and unknown variance 2, each di must also obey a Normal 

distribution with variance 2 centered around the true target value 

f(xi) rather than zero. 

 

• Therefore p(di/h) can be written as a Normal distribution with 

variance 2 and mean = f(xi). 

 

• Let us write the formula for this Normal distribution to describe 

p(di/h), beginning with the general formula for a Normal 

distribution and then substituting appropriate  and 2 
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• Because we are writing the expression for the probability of di given 

that h is the correct description of the target function f, we will also 

     substitute p=f(xi)=h(xi), yielding 

 

 

 

 

 

 

 

• We now apply a transformation that is common in maximum 

likelihood calculations. Rather than maximizing the above 

complicated expression we shall choose to maximize its (less 

complicated) logarithm. 

 

• This is justified because ln p is a monotonic function of p. Therefore 

maximizing ln p also maximizes p. 
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• The first term in this expression is a constant independent of h, and 

can therefore be discarded, yielding 

 

      

 

 

 

• Maximizing this negative quantity is equivalent to minimizing the 

corresponding positive quantity. 
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• Finally, we can again discard constants that are independent of h. 

 

 

 

 

• Thus, Eqn 6.6 shows that the maximum likelihood hypothesis hML 

the one that minimizes the sum of the squared errors between the 

observed training values di and the hypothesis predictions h(xi) 

 

• This holds under the assumption that the observed training values di 

are generated by adding random noise to the true target value, where 

this random noise is drawn independently for each example from a 

Normal distribution with zero mean. 

 

• As the above derivation makes clear, the squared error term (di-

h(xi))
2 directly from the exponent in the definition of the Normal 

distribution. 

 

 

 

 

 

 

Eqn 6.6 
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• Notice the structure of the above derivation involves selecting the 

hypothesis that maximizes the logarithm of the likelihood (ln 

p(D/h)) in order to determine the most probable hypothesis. 

 

• This approach of working with the log likelihood is common to 

many Bayesian analyses, because it is often more mathematically 

tractable than working directly with the likelihood. 

 

• In all cases, the maximum likelihood hypothesis might not be the 

MAP hypothesis, but if one assumes uniform prior probabilities 

over the hypotheses then it is. 

 

• Minimizing the sum of squared errors is a common approach in 

many neural network, curve fitting, and other approaches to 

approximating real-valued functions. 
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Reason to choose Normal distribution to characterize noise 

 

i. It allows for a mathematically straightforward analysis. 

 

ii. The smooth, bell-shaped distribution is a good approximation to 

many types of noise in physical systems. 
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Maximum Likelihood Hypotheses for Predicting 

Probabilities 
 

• Here we will derive criterion for a setting that is common in neural 

network learning: learning to predict probabilities. 

 

• Consider the setting in which we wish to learn a nondeterministic 

(probabilistic) function f: X→{0,1} , which has two discrete output 

values. 

 

• For ex: the instance space X might represent medical patients in 

terms of their symptoms, and the target function f(x) might be 1 if 

the patient survives the disease and 0 if not. 

 

• In this case we might well expect f to be probabilistic. For ex: 

among a collection of patients exhibiting the same set of observable 

symptoms, we might find that 92% survive, and 8% do not. 
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• This unpredictability could arise from our inability to observe all the 

important distinguishing features of the patients, or from some 

genuinely probabilistic mechanism in the evolution of the disease. 

 

• The effect is that we have a target function f(x) whose output is a 

probabilistic function of the input. 

 

• Given this problem setting, we might wish to learn a neural network 

(or other real-valued function approximator) whose output is the 

probability that f(x)=1. 

 

• In other words, we seek to learn the target function, f': X → [0,1], 

such that f'(x) = P(f (x) = 1). 

 

• In order to learn f‘ , we can train a neural network directly from the 

observed training examples of f, and derive a maximum likelihood 

hypothesis for f‘ . 
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• To find a maximum likelihood hypothesis for f' we must first obtain 

     an expression for P(D/h). 

 

• Let us assume the training data D is of the form D = {<xl, dl> . . . 

<xm,dm>}, where di is the observed 0 or 1 value for f(xi). 

 

• Thus treating both xi and di as random variables, and assuming that 

     each training example is drawn independently, we can write P(D/h)    

      as  

 

 

 

• It is reasonable to assume, that the probability of encountering any 

particular instance xi is independent of the hypothesis h. For ex: the 

probability that our training set contains a particular patient xi is 

independent of our hypothesis about survival rates. 

 

 

Eqn 6.7 
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• When x is independent of h we can rewrite the Eqn 6.7 using the 

product rule of probability as  

 

 

 

 

• The probability of P(di/h, xi) of observing di=1 for a single instance 

xi , given a world in which hypothesis h holds is h(xi) i.e., P(di=1/h, 

xi) = h(xi) and in general 

     

 

Eqn 6.8 

Eqn 6.9 
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• In order to substitute Eqn 6.9 into Eqn 6.8 , let us re-express Eqn 

6.9 in a more mathematically manipulable form, as 

 

 

 

 

• It is easy to verify that the expressions in Eqn 6.9 and Eqn 6.10 are 

equivalent. We can use Eqn 6.10 to substitute for P(di/h,xi) in Eqn 

6.8 to obtain 

 

 

 

Eqn 6.10 

Eqn 6.11 



11-11-2019 Machine Learning-15CS73 52 

• Now we write an expression for the maximum likelihood hypothesis 

 

 

 

 

 

• The last term is a constant independent of h, so it can be dropped 

 

 

 

 

• As in earlier cases, we will find it easier to work with the log of the 

likelihood, yielding 

 

 

Eqn 6.12 

Eqn 6.13 
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• Eqn 6.13 describes the quantity that must be maximized in order to 

    obtain the maximum likelihood hypothesis in our current problem  

    setting. 

 

• This result is analogous to our earlier result showing that 

minimizing the sum of squared errors produces the maximum 

likelihood hypothesis in the earlier problem setting. 
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Gradient Search to Maximize Likelihood in a Neural Net 

 

• Let us take  G(h,D) to denote the quantity of Maximum Likelihood 

hypotheses for the probabilistic target function. 

 

• Our objective here is to derive a weight-training rule for neural 

network learning that seeks to maximize G(h,D) using gradient 

ascent. 

 

• The gradient of G(h,D) is given by the vector of partial derivatives 

of G(h,D) with respect to the various network weights that define 

the hypothesis h represented by the learned network. 

 

• In this case, the partial derivative of G(h,D) with respect to weight 

wjk from input k to unit j is 
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• Suppose our neural network is constructed from a single layer of 

sigmoid units then we have 

 

      

 

    where xijk is the kth input to unit j for the ith training example, and  

    '(x) is the derivative of the sigmoid squashing function 

 

 

Eqn 6.14 
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• Finally, substituting this expression into Eqn 6.14, we obtain a 

simple expression for the derivatives that constitute the gradient  

 

 

 

 

• Because we seek to maximize rather than minimize P(D/h), we 

perform gradient ascent rather than gradient descent search. On each 

iteration of the search the weight vector is adjusted in the direction 

of the gradient, using the weight update rule     

      

     

     

     where, 

      

Eqn 6.15 
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where η is a small positive constant that determines the step size of 

the gradient ascent search. 

 

• Comparing this weight-update rule to the weight-update rule used 

by the Backpropagation algorithm we can get  

 

     

 

 

     where, 

 

 

 

 

     Notice this is similar to the rule given in Eqn 6.15 except for  

     the extra term h(x)(l - h(xi)), which is the derivative of the sigmoid  

     function.    
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Minimum Description Length Principle 
 

• The Minimum Description Length principle is motivated by 

interpreting the definition of hMAP in the light of basic concepts 

from information theory. 

 

• Consider the definition of hMAP 

 

 

 

 

     which can be equivalently expressed in terms of maximizing the     

    log2  

      
 

     

    or alternatively, minimizing the negative of this quantity 
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• Eqn 6.16 can be interpreted as a statement that short hypotheses are 

preferred, assuming a particular representation scheme for encoding 

hypotheses and data. 

 

• To explain this, let us take a basic result from information theory: 

Consider the problem of designing a code to transmit messages 

drawn at random, where the probability of encountering message i is 

     pi.  

 

• We are interested here in the most compact code i.e., we are 

interested in the code that minimizes the expected number of bits we 

must transmit in order to encode a message drawn at random. 

 

 

 

Eqn 6.16 
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• Clearly, to minimize the expected code length we should assign 

shorter codes to messages that are more probable. 

 

• Shannon and Weaver (1949) showed that the optimal code(i.e., the 

code that minimizes the expected message length) assigns –log2pi 

bits  to encode message i .  

 

• The number of bits required to encode message i using code C will 

be referred as the description length of message i with respect to C, 

which is denoted as Lc(i). 

 

• Let us interpret Eqn 6.16 in the perspective of the above result from 

coding theory 

 

 -log2P(h) is the description length of h under the optimal 

encoding for the hypothesis space H. 
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In our notation, 𝑳𝑪𝑯
(h) = -log2P(h), where CH is the optimal code 

for hypothesis space H. 

 

 -log2P(D/h) is the description length of the training data D given 

     hypothesis h, under its optimal encoding. In our notation, 

     𝑳𝑪𝑫/𝒉
(D/h) = - log2P(D/h), where CD/h  is the optimal code for  

    describing data D assuming that both the sender and receiver  

    know the hypothesis h. 

 

 Therefore we can rewrite Eqn 6.16 to show that hMAP  is the 

hypothesis h that minimizes the sum given by the description 

length of the hypothesis plus the description length of the data 

given the hypothesis. 
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where CH and CD/h are the optimal encodings for H and for D given 

h, respectively. 

 

• The Minimum Description Length (MDL) principle recommends 

choosing the hypothesis that minimizes the sum of these two 

description lengths. 

 

• To apply this principle in practice we must choose specific 

encodings or representations appropriate for the given learning task. 

 

• Assuming we use the codes C1 and C2 to represent the hypothesis 

and the data given the hypothesis, we can state the MDL principle 

as 

 

 

 

 
Eqn 6.17 
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• The above analysis shows that if we choose C1 to be the optimal 

encoding of hypotheses CH, and if we choose C2 to be the optimal 

encoding CD/h  then  hMDL = hMAP. 

 

 

 



• Conclusions from MDL Principle 

 

• Does MDL principle prove once and for all that short 

hypotheses are best? 

 

• No. We have only shown that if a representation of hypotheses 

is chosen so that the size of hypothesis h is -log2P(h), and if a 

representation for exceptions is chosen so that the encoding 

length of D given h is equal to –log2P(D/h), then the MDL 

principle produces MAP hypotheses.  
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Naïve Bayes Classifier 
 

• One highly practical Bayesian learning method is the naive Bayes 

learner, often called the Naive Bayes classifier. 

• The Naive Bayes algorithm is a method that uses the probabilities 

of each attribute belonging to each class to make a prediction. 

• In some domains its performance has been shown to be comparable 

to that of neural network and decision tree learning. 

 



• The naive Bayes classifier applies to learning tasks 

where each instance x is described by a conjunction 

of attribute values and where the target function f(x) 

can take on any value from some finite set V. 

• A set of training examples of the target function is 

provided, and a new instance is presented, described 

by the tuple of attribute values <al, a2.. .an>. 
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• The learner is asked to predict the target value, or classification, for 

this new instance. 

 

• The Bayesian approach to classifying the new instance is to assign 

the most probable target value, vMAP  , given the attribute values < a1 

,a2 .. .an >  that describe the instance 

 

 

 

 

• We can use Bayes theorem to rewrite this expression as 

 

 

        

Eqn 6.19 
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• Now we could attempt to estimate the two terms in Eqn 6.19 based 

on the training data. 

 

• It is easy to estimate each of the P(vj) simply by counting the 

frequency with which each target value vj occurs in the training 

data. 

 

• However, estimating the different P(al, a2.. . an/vj) terms in this 

fashion is not feasible unless we have a very, very large set of 

training data. 

 

• The problem is that the number of these terms is equal to the 

number of possible instances times the number of possible target 

values. 

 

• Therefore, we need to see every instance in the instance space many 

times in order to obtain reliable estimates.  
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Assumption 

The naive Bayes classifier is based on the simplifying assumption that 

the attribute values are conditionally independent given the target 

value. 

 

• From this assumption it is possible to say that given the target value 

of the instance, the probability of observing the conjunction 

a1,a2…an is just the product of probabilities for the individual 

attributes: 

 

     P(a1,a2….an/vj) =  𝑷(𝒂𝒊/𝒗𝒋𝒊 )  

 

    Substituting this into Eqn 6.19, we have the approach used by the  

    Naive Bayes classifier. 
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   where vNB denotes the target value output by the Naïve Bayes  

   classifier.  

 

• Thus, in a in a Naive Bayes classifier the number of distinct P(ai/vj) 

terms that must estimated from the training data is just the number 

of distinct attribute values times the number of distinct target 

values- a much smaller number compared to estimating 

P(a1,a2,….an/vj). 

 

• To summarize, the naive Bayes learning method involves a learning 

step in which the various P(vj) and P(ai/vj) terms are estimated, 

based on their frequencies over the training data. 

Eqn 6.20 
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• The set of these estimates corresponds to the learned hypothesis. 

This hypothesis is then used to classify each new instance by 

applying the rule in Eqn 6.20. 

 

• Whenever the naive Bayes assumption of conditional independence 

is satisfied, this naive Bayes classification vNB is identical to the 

MAP classification. 

 

• One interesting difference between the naive Bayes learning method 

and other learning methods we have considered is that there is no 

explicit search through the space of possible hypotheses. 
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An Illustrative Example 
 

• Let us apply the naive Bayes classifier to a concept learning 

problem we considered during our discussion of decision tree 

learning: classifying days according to whether someone will play 

tennis(PlayTennis). 

 

• Table 3.2 provides a set of 14 training examples of the target 

concept PlayTennis, where each day is described by the attributes 

Outlook, Temperature, Humidity, and Wind. 

 

• Here we use the naive Bayes classifier and the training data from 

this Table 3.2 to classify the following novel instance: 

 

     <Outlook = sunny, Temperature = cool, Humidity = high, Wind =    

        strong> 

    



Table 3.2:Training examples for the target concept PlayTennis 

Day Outlook Temperature Humidity Wind PlayTennis 

D1 Sunny Hot High Weak No 

D2 Sunny Hot High Strong No 

D3 Overcast Hot High Weak Yes 

D4 Rain Mild High Weak Yes 

D5 Rain Cool Normal Weak Yes 

D6 Rain Cool Normal Strong No 

D7 Overcast Cool Normal Strong Yes 

D8 Sunny Mild High Weak No 

D9 Sunny Cool Normal Weak Yes 

D10 Rain Mild Normal Weak Yes 

D11 Sunny Mild Normal Strong Yes 

D12 Overcast Mild High Strong Yes 

D13 Overcast Hot Normal Weak Yes 

D14 Rain Mild High Strong No 
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• Our task is to predict the target value (yes or no) of the target 

concept PlayTennis for this new instance.    

 

• Instantiating Eqn 6.20 to fit the current task, the target value VNB is 

given by 
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Estimating probabilities of attribute values and target value from 

training data 

 
Probabilities of Target Value(PlayTennis) 

 

 

 

 

 

 

 

 

Probabilities of Outlook Attribute values 

  

     

PlayTennis P(Yes)/P(No) 

Yes  9 9/14 

No 5 5/14 

Total 14 

Yes No P(Yes) P(No) 

Sunny 2 3 2/9 3/5 

Overcast 4 0 4/9 0/5 

Rain 3 2 3/9 2/5 

Total 9 5 
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Probabilities of Temperature Attribute Values   

 

 

 

 

 

 
 

Probabilities of Humidity Attribute Values  

 

Yes No P(Yes) P(No) 

Hot 2 2 2/9 4/5 

Mild 4 2 4/9 2/5 

Cool 3 1 3/9 1/5 

Total 9 5 

Yes No P(Yes) P(No) 

Normal 6 1 6/9 1/5 

High 3 4 3/9 4/5 

Total 9 5 
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Probabilities of Wind Attribute Values   

 

 

 

 

 

 

• Using these probability estimates and similar estimates for the 

remaining attribute values, we calculate vNB according to Eqn 6.21 

as follows: 

      

     For vj = Yes 

     VNB = P(Yes) P(Sunny/Yes) P(Cool/Yes) P(High/Yes) P(Strong/Yes) 

            = 9/14 * 2/9 * 3/9 * 3/9 * 3/9 

            = 0.00529  
 

Yes No P(Yes) P(No) 

Strong 3 3 3/9 3/5 

Weak 6 2 6/9 2/5 

Total 9 5 



11-11-2019 Machine Learning-15CS73 81 

     For vj = No 

     VNB = P(No) P(Sunny/No) P(Cool/No) P(High/No) P(Strong/No) 

            = 5/14 * 3/5 * 1/5 * 4/5 * 3/5  

            = 0.020571 

 

• Thus, the naive Bayes classifier assigns the target value PlayTennis 

= No to this new instance, based on the probability estimates 

learned from the training data. 
 



Table 3.2:Training examples for the target concept Buys_Computer 

RID Age Income Student Credit_Rating Buys_Computer 

1 Youth High No Fair No 

2 Youth High No Excellent No 

3 Middle_aged High No Fair Yes 

4 Senior Medium No Fair Yes 

5 Senior Low Yes Fair Yes 

6 Senior Low Yes Excellent No 

7 Middle_aged Low Yes Excellent Yes 

8 Youth Medium No Fair No 

9 Youth Low Yes Fair Yes 

10 Senior Medium Yes Fair Yes 

11 Youth Medium Yes Excellent Yes 

12 Middle_aged Medium No Excellent Yes 

13 Middle_aged High Yes Fair Yes 

14 Senior Medium No Excellent No 

11-11-2019 Machine Learning-15CS73 82 

 

    



11-11-2019 Machine Learning-15CS73 83 

Estimating Probabilities 

 

• Till now, we have estimated probabilities by the fraction of times the 

event is observed to occur over the total number of opportunities. 

 

• For ex : we estimated P(Wind = strong|Play Tennis = no) by the 

fraction 
𝑛

𝑐

𝑛
  where n = 5 is the total number of training examples for 

which PlayTennis = no, and n= 3 is the number of these for which 

Wind = strong. 

 

• While this observed fraction provides a good estimate of the 

probability in many cases, it provides poor estimates when nc is very 

small. 

 

• To see the difficulty, for time being let us imagine that the value of 

P(Wind = strong | PlayTennis = no) is .08 and that we have a 

sample containing only 5 examples for which PlayTennis = no. 
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• Then the most probable value for nc is 0 which raises two 

difficulties: 

 

i.
𝑛

𝑐

𝑛
 produces a biased underestimate of the probability. 

 

ii. when this probability estimate is zero, this probability term 

will dominate the Bayes classifier if the future query contains 

Wind = strong. 

 

• To avoid this difficulty we can adopt a Bayesian approach to 

estimating the probability, using the m-estimate defined as follows: 

 

Eqn 6.22 
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• Here, nc and n are defined as before, p is our prior estimate of the 

probability we wish to determine and m is a constant called the 

equivalent sample size which determines how heavily to weight p 

relative to the observed data. 

 

• A typical method for choosing p in the absence of other information 

is to assume uniform priors, i.e., if an attribute has k possible values 

we set p = 
𝟏

𝒌
 . 

 

•  For ex: in estimating P(Wind = Strong | PlayTennis = no) we note 

the attribute Wind has two possible values, so uniform priors would 

correspond to choosing p = 0.5. 

 

• Note that in Eqn 6.22 if m is zero, then m-estimate is equivalent to 

the simple fraction 
𝒏

𝒄

𝒏
 . 
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• If both n and m are nonzero, then the observed fraction 
𝒏

𝒄

𝒏
 and prior 

p will be combined according to the weight m. 

 

• The reason m is called the equivalent sample size is that Eqn 6.22 

can be interpreted as augmenting the n actual observations by an 

additional m virtual samples distributed according to p. 
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Bayesian Belief Networks 
 

• The naive Bayes classifier makes significant use of the assumption 

that the values of the attributes a1 . . .an are conditionally 

independent given the target value v. 

 

• This assumption dramatically reduces the complexity of learning the 

target function. 

 

• When it is met, the naive Bayes classifier outputs the optimal Bayes 

classification. However, in many cases this conditional 

independence assumption is clearly overly restrictive. 

 

• A Bayesian belief network describes the probability distribution 

governing a set of variables by specifying a set of conditional 

independence assumptions along with a set of conditional 

probabilities. 



11-11-2019 Machine Learning-15CS73 88 

• In contrast to the naive Bayes classifier, which assumes that all the 

variables are conditionally independent given the value of the target 

variable, Bayesian belief networks allow stating conditional 

independence assumptions that apply to subsets of the variables. 

 

• Thus, Bayesian belief networks provide an intermediate approach 

that is less constraining than the global assumption of conditional 

independence made by the naive Bayes classifier. 

 

• Bayesian belief networks more tractable than avoiding conditional 

independence assumptions altogether. 

 

• In general, a Bayesian belief network describes the probability 

distribution over a set of variables. Consider an arbitrary set of 

random variables Y1 . . . Yn, where each variable Yi can take on the 

set of possible values V(Yi). 
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• We define the joint space of the set of variables Y to be the cross 

product V(Yl) x V(Y2) x . . . V(Yn). Each item in the joint space 

corresponds to one of the possible assignments of values to the tuple 

of variables <Yl . . . Yn>.  

 

• The probability distribution over this joint space is called the joint 

probability distribution. 

 

• A Bayesian belief network describes the joint probability 

distribution for a set of variables. 
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Conditional Independence 

 

• Let X, Y, and Z be three discrete-valued random variables. We say 

that X is conditionally independent of Y given Z if the probability 

distribution governing X is independent of the value of Y given a 

value for Z i.e., if  

 

 

 

    where xiϵV(X), yj ϵ V(Y), and zkϵ V(Z). 

 

• We commonly write the above expression in abbreviated form as 

P(X | Y, Z) = P(X | Z). This definition of conditional independence 

can be extended to sets of variables as well. 

 

• We say that the set of variables X1 . . . Xl is conditionally 

independent of the set of variables Yl . . . Ym given the set of 

variables Z1 . . . Zn if 
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• The correspondence can be drawn between  this definition and our 

use of conditional ,independence in the definition of the naive Bayes 

classifier.  
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Bayesian Belief Network Representation 

 

• A Bayesian belief network (Bayesian network for short) represents 

the joint probability distribution for a set of variables. 

 

• For example, the Bayesian network in figure 6.3.1 represents the 

joint probability distribution over the boolean variables Storm, 

Lightning, Thunder, ForestFire, Campfire, and BusTourGroup. 

 

• In general, a Bayesian network represents the joint probability 

distribution by specifying a set of conditional independence 

assumptions (represented by a directed acyclic graph), together with 

sets of local conditional probabilities. 

 

• Each variable in the joint space is represented by a node in the 

Bayesian network 
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Bayesian Belief Network Representation 

 

• A Bayesian belief network (Bayesian network for short) represents 

the joint probability distribution for a set of variables. 

 

• For example, the Bayesian network in figure 6.3.1 represents the 

joint probability distribution over the boolean variables Storm, 

Lightning, Thunder, ForestFire, Campfire, and BusTourGroup. 

 

• In general, a Bayesian network represents the joint probability 

distribution by specifying a set of conditional independence 

assumptions (represented by a directed acyclic graph), together with 

sets of local conditional probabilities. 

 

• Each variable in the joint space is represented by a node in the 

Bayesian network 
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Figure 6.3.1: Bayesian Belief Network 
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• For each variable two types of information are specified. 

i. The network arcs represent the assertion that the variable is 

conditionally independent of its nondescendants in the network 

given its immediate predecessors in the network. We say X is a 

descendant of Y if there is a directed path from Y to X. 

 

ii. A conditional probability table is given for each variable, 

describing the probability distribution for that variable given 

the values of its immediate predecessors. 

 

• The joint probability for any desired assignment of values <y1 , . . . , 

yn> to the tuple of network variables <Y1 . . . Yn> can be computed 

by the formula 

 

 

 

     



11-11-2019 Machine Learning-15CS73 97 

    where Parents(Yi) denotes the set of immediate predecessors of Yi  

    in the network. 

 

• Let us illustrate the Bayesian network given in figure 6.3.1 which 

represents the joint probability distribution of boolean variables 

Storm, Lightning, Thunder, ForestFire, Campfire, and 

BusTourGroup. 

 

• Consider the node Campfire. The network nodes and arcs represent 

the assertion that Campfire is conditionally independent of its 

nondescendants Lightning and Thunder, given its immediate 

parents Storm and BusTourGroup. 

 

• This means that once we know the value of the variables Storm and 

BusTourGroup, the variables Lightning and Thunder provide no 

    additional information about Campfire. 
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• The figure 6.3.2 below shows the conditional probability table 

associated with the variable Campfire. 

 

 

 

 

 

 

 

 

 

 

• The top left entry in this table, for ex: expresses the assertion that 

      P(Campfire=True| Storm=True, BusTourGroup=True)=0.4 

 

• Note this table provides only the conditional probabilities of 

Campfire given its parent variables Storm and BusTourGroup. 

 

 

 

     

Figure 6.3.2: The conditional Probability Table for Campfire node 
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• The set of local conditional probability tables for all the variables, 

together with the set of conditional independence assumptions 

described by the network, describe the full joint probability 

distribution for the network. 

 

• One attractive feature of Bayesian belief networks is that they allow 

a convenient way to represent causal knowledge such as the fact that 

Lightning causes Thunder. 

 

 

 

 

 

 

 

 

 

 

 

     



11-11-2019 Machine Learning-15CS73 102 

Learning in Bayesian Belief Networks 

 

• Can we devise effective algorithms for learning Bayesian belief 

networks from training data? 

 

• Several different settings for this learning problem can be 

considered. 

i. First, the network structure might be given in advance, or it 

might have to be inferred from the training data. 

ii. Second, all the network variables might be directly observable 

in each training example, or some might be unobservable. 

 

• In the case where the network structure is given in advance and the 

variables are fully observable in the training examples, learning the 

conditional probability tables is straightforward.  
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• We simply estimate the conditional probability table entries just as 

we would for a naive Bayes classifier. 

 

• In the case where the network structure is given but only some of 

the variable values are observable in the training data, the learning 

problem is more difficult. 

 

• This problem is somewhat analogous to learning the weights for the 

hidden units in an artificial neural network, where the input and 

output node values are given but the hidden unit values are left 

unspecified by the training examples. 

 

• Russell et al.(1995) proposed a gradient ascent procedure that learns 

entries in conditional probability tables. 

 

• This gradient ascent procedure searches through a space of 

hypotheses that corresponds to the set of all possible entries for the 

    conditional probability tables. 
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Learning Structure of Bayesian Networks 

 

• Learning Bayesian networks when the network structure is not 

known in advance is also difficult. 

 

• Cooper and Herskovits (1992) present a Bayesian scoring metric for 

choosing among alternative networks. 

 

• They also present a heuristic search algorithm called K2 for learning 

network structure when the data is fully observable. 

 

• Constraint-based approaches to learning Bayesian network structure 

have also been developed 
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The EM Algorithm 
 

• In many practical learning settings, only a subset of the relevant 

instance features might be observable. 

 

• For ex : in training our or using the Bayesian belief network we 

might have data where only a subset of the network variables 

Storm, Lightning, Thunder, ForestFire, Campfire, and 

BusTourGroup have been observed. 

 

• Many approaches have been proposed to handle the problem of 

learning in the presence of unobserved variables. 

 

• The EM algorithm (Dempster et al. 1977), a widely used approach 

     for learning in the presence of unobserved variables. 
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• The EM algorithm can be used even for variables whose value is 

never directly observed, provided the general form of the 

probability distribution governing these variables is known. 

 

• The EM algorithm has been used to train Bayesian belief networks 

as well as  radial basis function networks. 

 

• The EM algorithm is also the basis for many unsupervised 

clustering algorithms. 
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Estimating Means of k Gaussians 

 

• Consider a problem in which the data D is a set of instances 

generated by a probability distribution that is a mixture of k distinct 

Normal distributions. 

 

• This problem setting is illustrated in figure 6.4 for the case where k 

= 2 and where the instances are the points shown along the x-axis. 

 

• Each instance is generated using a two-step process. 

 

i. One of the k Normal distributions is selected at random. 

 

ii. A single random instance xi is generated according to this 

selected distribution. 

     This process is repeated to generate a set of data points as shown in     

     figure 6.4 
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Figure 6.4 : Instances generated by a mixture of two Normal distributions with  

                     identical variance  
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• Let us consider a special case, where the selection of the single 

Normal distribution at each step is based on choosing each with 

uniform probability, where each of the k Normal distributions has 

the same variance 2. 
 

• The learning task is to output a hypothesis h = <1… k> that 

describes the means of each of the k distributions. 

 

• This task involves finding a maximum likelihood hypothesis for 

these means; i.e., a hypothesis h that maximizes p(D/h). 

 

• It is easy to calculate the maximum likelihood hypothesis for the 

mean of a single Normal distribution given the observed data 

instances x1, x2, . . . , xm drawn from this single distribution 
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• Restating Eqn 6.6 using our current notation, we have 

 

 

 

 

 

• In this case, the sum of squared errors is minimized by the sample 

mean 

 

 

 

 

 

 

     

 

      

Eqn 6.27 

Eqn 6.28 
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Necessity for EM Algorithm 

 

• Our problem involves  a mixture of k different Normal distributions, 

and we cannot observe which instances were generated by which 

distribution. 

 

• Thus, we have a prototypical example of a problem involving 

hidden variables. 

 

• In the example of figure 6.4 we can think of the full description of 

    each instance as the triple <xi , zi1 , zi2>, where xi is the observed      

value of the ith instance and where zi1 and zi2 indicate which of the two  

    Normal distributions was used to generate the value xi. 

 

• Here xi is the observed variable in the description of the instance, 

and zi1 and zi2 are hidden variables. 

 

 

 



11-11-2019 Machine Learning-15CS73 119 

• If the values of zi1 and zi2 were observed, we could use Eqn 6.27 to 

solve for the means 1 and 2. Because they are not, we will instead 

use the EM algorithm. 

 

• Applied to our k-means problem the EM algorithm searches for a 

maximum likelihood hypothesis by repeatedly re-estimating the 

expected values of the hidden variables zij given its current 

hypothesis <1.....k>  then recalculating the maximum likelihood 

hypothesis using these expected values for the hidden variables. 

 

 



Describing an instance of EM 

algorithm 

 
• Applied to the problem of estimating the two means 

for figure 6.4, the EM algorithm first initializes the 

hypothesis to h=<1,2>, where 1 and 2 are 

arbitrary initial values. 

 

• It then iteratively re-estimates h by repeating the 

following two steps until the procedure converges to 

a stationary value for h. 
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Step 1: Calculate the expected value E[zij] of each hidden variable zij,  

             assuming the current hypothesis h= <1,2> holds.  

 

Step 2: Calculate a new maximum likelihood hypothesis h' = <1',     
             2'>, assuming the value taken on by each hidden variable zij  

             is its expected value E[zij] calculated in Step 1. Then replace  

             the hypothesis h= <1,2>  by the new hypothesis h' = <1',     
             2'>  and iterate. 

 

 



Implementation of steps in practice 

 

• Step 1 must calculate the expected value of each zij . 

This E[zij] is just the probability that instance xi was 

generated by the jth Normal distribution 
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• Thus the first step is implemented by substituting the current values 

<1, 2> and the observed xi into the above expression. 

 

• In the second step we use the E[zij] calculated during Step 1 to 

derive a new maximum likelihood hypothesis h' = <1', 2'>. The 

    maximum likelihood hypothesis in this case is given by 
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• Our new expression is just the weighted sample mean for j, with 

each instance weighted by the expectation E[zij] that it was 

generated by the jth Normal distribution. 
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General Statement of EM Algorithm 

 

• The EM algorithm can be applied in many settings where we wish 

to estimate some set of parameters θ that describe an underlying 

probability distribution, given only the observed portion of the full 

    data produced by this distribution. 

 

• In the two-means example the parameters of interest were θ = 

<1,2>, and the full data were the triples <xi, zi1, zi2 > of which 

only the xi were observed. 

 

• In general let X = {xl, . . . , xm} denote the observed data in a set of 

m independently drawn instances, let Z = {z1, . . . , zm} denote the 

unobserved data in these same instances, and let Y = X U Z denote 

     the full data. 
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• The unobserved Z can be treated as a random variable whose 

probability distribution depends on the unknown parameters θ and 

on the observed data X. 

 

• Similarly ,Y is a random variable because it is defined in terms of 

the random variable Z. 

 

• We use h to denote the current hypothesized values of the 

parameters θ, and h' to denote the revised hypothesis that is 

estimated on each iteration of the EM algorithm. 

 

• The EM algorithm searches for the maximum likelihood hypothesis 

h' by seeking the h' that maximizes E[ln P(Y | h')]. 
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• Let us consider exactly what this expression signifies 

i. First, P(Y | h') is the likelihood of the full data Y given 

hypothesis h'. It is reasonable that we wish to find a h' that 

maximizes some function of this quantity. 

 

ii. Second, maximizing the logarithm of this quantity ln P(Y | h') 
also maximizes P(Y | h'). 
 

iii. Third, we introduce the expected value E[ln P(Y | h')] because 

the full data Y is itself a random variable. 

 

• Given that the full data Y is a combination of the observed data X 

and unobserved data Z, we must average over the possible values of 

the unobserved Z, weighting each according to its probability. 

 

• In other words we take the expected value E[ln P(Y | h')] over the 

probability distribution governing the random variable Y. 
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• Let us define a function Q(h’| h) that gives E[ln P(Y | h')] as a 

function of h', under the assumption that θ = h and given the 

observed portion X of the full data Y. 

 

 

 

• In its general form, the EM algorithm repeats the following two 

steps until convergence: 

 

Step 1: Estimation (E) step: 

Calculate Q(h‘ | h) using the current hypothesis h and the observed 

data X to estimate the probability distribution over Y. 
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Step 2: Maximization(M) step: 

Replace hypothesis h by the hypothesis h' that maximizes this Q 

function. 

 

 

 

 

 When the function Q is continuous, the EM algorithm converges to a  

 stationary point of the likelihood function P(Y/h'). 
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Derivation of k Means Algorithm 

 

• To illustrate the general EM algorithm, let us use it to derive the 

algorithm for estimating the means of a mixture of k Normal 

distributions. 

 

• In the k-means objective is to estimate the parameters θ = <1..k> 

that define the means of the k Normal distributions. 

 

• We are given the observed data X = {<xi>}.The hidden variables Z 

= {<zi1,. . . , zik>} in this case indicate which of the k Normal 

distributions was used to generate xi. 

 

• To apply EM we must derive an expression for Q(h‘ | h) that applies 

to our k-means problem. 

 

• First, let us derive an expression for ln p(Y | h') 
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• The probability p(yi | h') of a single instance yi = <xi , zi1 , . . . zik> if 

the full data can be written as  

 

 

 

 

• Given this probability for a single instance p(yi \ h'), the logarithm 

of the probability ln P(Y \ h') for all m instances in the data is 
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• Finally we must take the expected value of this ln P(Y \ h') over the 

probability distribution governing Y. The above expression for ln 

P(Y \ h') is a linear function of these zij. In general, for any function 

f(z) that is a linear function of z, the following equality holds 

 

                E[f(z)] = f(E[z]) 

 

• This general fact about linear functions allows us to write 
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• To summarize, the function Q(h‘  | h) for the k means problem is 

 

 

 

 

     where h' = <1', . . . ,k'> and where E[zij] is calculated based on  

     the current hypothesis h and observed data X. We know that  

 

 

 

 

 

      Thus, the first (estimation) step of the EM algorithm defines the Q  

      function based on the estimated E[zij] terms. 

 

• The second (maximization) step then finds the values 1' . . . k' that 

maximize this Q function. In the current case 

 

 

      

Eqn 6.29 
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Thus, the maximum likelihood hypothesis here minimizes a weighted 

sum of squared errors, where the contribution of each instance xi to the 

error that defines j' is weighted by E[zij] 

 

• The quantity given by Eqn 6.30 is minimized by setting each j' to 

the weighted sample mean  

 

      

Eqn 6.30 

Eqn 6.31 


