Module 4: Chapter 6
Bayesian Learning




1. Introduction

- A probabilistic approach to inference

= It is based on the assumption that the quantities of
interest are governed by probability distributions and
that optimal decisions can be made by reasoning about
these probabilities together with observed data.



- Quantitative approach to weighing the evidence
supporting alternative hypotheses
« Important

= Calculates the explicit probability like naive Bayes.

- Naive Bayes classifier competitive, outperforms as a
classifier

s They help Understand learning algorithms that do
not explicitly manipulate probabilities
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« Bayesian learning methods are relevant to our study of machine
learning for two different reasons.

I. Bayesian learning algorithms that calculate explicit
probabilities for hypotheses, such as the naive Bayes
classifier, are among the most practical approaches to
certain types of learning problems.



)|

» For ex : Michie et al.(1994) provide: a~detailed study
comparing the naive Bayes classifier to other learning
algorithms, including decision tree and neural network
algorithms.

» These researchers show that the naive Bayes classifier is
competitive with these other learning algorithms in many
cases and that in some cases it outperforms these other
methods.

1. The Bayesian methods are important to our study of
machine learning is that they provide a useful perspective
for understanding many learning algorithms that do not
explicitly manipulate probabilities.



> For ex : We will analyze the algorithms:such-as the FIND-
S and Candidate-Elimination algorithms to determine the
conditions under which they output the most probable
hypothesis given the training data.

» Bayesian analysis provides an opportunity for the
choosing the appropriate alternative error function(cross
entropy) in neural network learning algorithms.

» We use a Bayesian perspective to analyze the inductive
bias of decision tree learning algorithms that favor short
decision trees and examine the closely related Minimum
Description Length principle.



Feature of Bayesian learning methods

include:

« Each observed training example can incrementally decrease or
Increase the estimated probability that a hypothesis is correct. This
provides a more flexible approach to the learning compared to the
algorithms that completely eliminate a hypothesis if it is found to
be inconsistent with any single example.

* Prior knowledge can be combined with observed data to determine
the final probability of a hypothesis. The prior probability is got
through (1) a prior probability of each candidate hypothesis (ii) a
probability distribution over observed data for each possible
hypothesis.

- Bayesian methods can accommodate hypotheses that make
probabilistic predictions For ex : hypotheses such as “this
pneumonia patient has a 93% chance of complete recovery”



* New Instances can be classified by combining the
predictions of multiple hypotheses, weighted by their
probabilities.

« Even In cases where Bayesian methods prove
computationally intractable, they can provide a
standard of optimal decision making against which
other practical methods can be measured.



Difficulty of applying Bayesian method

 Bayesian methods typically require initial knowledge of many

probabilities.
» The significant computational cost required to determine the

Bayes optimal hypothesis in the general case.



2. BAYES THEOREM

« Determining the most (best) hypothesis from some
space H, (having initial prior probabilities of various
hypotheses ) given the observed training data D.

- Calculates the probability of a hypothesis based on its
prior probability, the probabilities of observing
various data given the hypothesis, and the observed
data itself.



Conditional probability

Bowl A has 1 blue and 4 vellow Marbles
Bowl B 3 blue and 2 ¢

What is the likelihood of picking a blue marble
or a yellow marble from any bowl ?

# of outcomes are finite and equally likely the
probability of an event happening is

P(event) = # of favourable outcome/#of possible outcome

Experimental Theoretical

p(] # times E oceurred P(E) number of ways E possible
: ‘} . ' ’ a A -t .
Total # 1rials tolal number of possible outcomes




What is the probability of picking
a blue marble from bowl A ?

« i bl
ble )= L
P(bloe) 5 — T

gi{en \ Qw\ A

P(b\ue A) = 5

o todion , g B
condthional ?mbab M«é




The probability of picking
a blue marble from bowl A =1/5

What is the probability that the picked
marble came from bowl A given that

itis blue ?




A Bowl has 2 blue and 3 yellow Marbles
Probability of drawing a blue marble is 2/5

Probability of drawing a second biue marble is ?




A Bowl has 2 blue and 3 yellow Marbles
Probability of drawing a blue marble is 2/5

Probability of drawing a second blue marble is %
r 4

Blue Blue 1/4 =P(B2|B1)

Blue yellow 3/4
Yellow  Blue 2/4

Yellow  Yellow 2/4



Probability of drawing a first and second marble
in a row with yellow is 3/5 * 2/4 = 3/10
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Probability of second marble being yellow
irrespective of the color of the first oneis 3/5

P(y2) = P(B1 and¥2)

+ P(Y1 and y2)
= 3 ,4a=12

o 0 5







Notation

« P(h) :initial probability that hypothesis h holds, before
we have observed the training data. prior probability
of h and may reflect any background knowledge we have
about the chance that h is a correct hypothesis.

« P(D) : prior probability that training data D will be
observed-no knowledge of h

« P(D|h) : probability of observing data D in which
hypothesis h holds.

 P(h|D) : probability that h holds given the observed
training data D. posterior probability of h reflects
the influence of the training data D



Bayes theorem:

P(Dih)P (k)
P(D)

P(h|D) =



- The learner considers some set of candidate
hypotheses H and is interested in finding the
most probable hypothesis h € H given the
observed data D (or at least one of the
maximally probable if there are several).

- Any such maximally probable hypothesis is
called a maximum a posteriori (MAP)
hypothesis




- We can determine the MAP hypotheses by using
Bayes theorem to calculate the posterior
probability of each candidate hypothesis.



h,,.p 1s @ MAP hypothesis provided

hMﬂF = dIEIdX P(hlﬂ)
heH

- P(D|h) P (h)
~ en . P(D)

= argmax P(D|h) P(h)
heH



- In some cases, we will assume that every
hypothesis in H is equally probable a priori
(P(hy = P(hy) for all h; and h; in H).

- In this case we can further simplify Equation
and need only consider the term P(D|h) to find
the most probable hypothesis



« P(D|h) is often called the likelihood of the data D given h
« Any hypothesis that maximizes P(D|h) is called a
maximum likelihood (ML) hypothesis, h;;;.

hy = argmax P(D|h)
heH



o Product rule: probability P(A A B) of a conjunction of two events A and B

P(AA B)= P(A|B)P(B) = P(B|A)P(A)
. Sﬁm rule: probability of a disjunction of two events A and B
P(Av B)=P(A)+ P(B)- P(AAB)

o Bayes theorem; the posterior probability P(k|D) of h given D

P(Dih)P(h)

P(h|D) = P0)

o Theorem of total probability. if events Ay,..., A, are mutually exclusive with Y P(A;) =1,
then

(3
P(B) =) P(BIA)P(4)
i=1

TABLE 6.1
Summary of basic probability formulas,



Example:

- To illustrate Bayes rule, consider a medical
diagnosis problem in which there are two
alternative hypotheses:

(1) that the patient has a particular form of cancer
(2) that the patient does not.



- The available data is from a particular laboratory test
with two possible outcomes: + (positive) and -
(negative).

- We have prior knowledge that over the entire population
of people only .008 have this disease.

« Furthermore, the lab test is only an imperfect indicator
of the disease.

- The test returns a correct positive result in only 98% of
the cases in which the disease is actually present and a
correct negative result in only 97% of the cases in which
the disease is not present.

- In other cases, the test returns the opposite result.
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= True False
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3 FN N
‘% False True
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P(cancer) = 008,  P(~cancer) = 992
P(®|cancer) = 98,  P(6|cancer) = .02
P(®|-cancer) = 03, P(B|-cancer) = 97



» Suppose we now observe a new patient for whom the lab
test returns a positive result.

- Should we diagnose the patient as having cancer or not?



3. BAYES THEOREM AND CONCEPT
LEARNING

- What is the relationship between Bayes theorem and the
problem of concept learning?
= Bayes theorem provides a principled way to calculate the
posterior probability of each hypothesis given the
training data

s we can use it as the basis for a straightforward
learning algorithm that calculates the probability for
each possible hypothesis

= then outputs the most probable.



3.1 Brute-Force Bayes Concept
Learning



» Concept learning problem:

= assume the learner considers some finite hypothesis space
H

= defined over the instance space X,
= the task is to learn some target concept ¢ : X -> {0,1}.
= learner is given some sequence of training examples

((x,d,)...(x,,d,))



- We can design a straightforward concept
learning algorithm to output the maximum a
posteriori hypothesis, based on Bayes theorem.



BRUTE-FORCE MAP LEARNING algorithm

1. For each hypothesis # in H, calculate the posterior probability
P(D|h)P(h)
P(D)
2. Output the hypothesis hy4p With the highest posterior probability

P(h|D) =

~ hyap = argmax P(h|D)
heH



- what values are to be used for P(h) and for P(D|h) ?
= choose the probability distributions P(h) and P(D|h) in
any way you wish, to describe our prior knowledge
about the learning task.
= Here let us choose them to be consistent with the
following assumptions:
1. The training data D is noise free (i.e., d; = c¢(x})).
2. The target concept c¢ is contained in the hypothesis
space H
3. We have no a priori reason to believe that any
hypothesis is more probable than any other.



- Given these assumptions, what values should we
specify for P(h)?

= Gilven no prior knowledge that one hypothesis is

more likely than another, it is reasonable to assign

the same prior probability to every hypothesis h
in H.

= because we assume the target concept is contained
in H we should require that these prior
probabilities sum to 1.



- Together these constraints imply that we should
choose

1
Phy=— forallhin H
|H | .



- What choice shall we make for P(D|h)?
« P(D|h) is the probability of observing the target
values D = (d, . . d,,) for the fixed set of instances (x,
. . X,,), given a world in which hypothesis h holds
(i.e., given a world in which h is the correct description
of the target concept c).



- Since we assume noise-free training data, the

probability of observing classification d;, given
his

s 11t d; = h(x;) and
= 0ifd; # h(xy)



1 if di = h(x;) for all 4; in D

P(D|h) =
(0 otherwise

In other words, the probability of data D given hypothesis h is 1if D is
consistent with h, and o otherwise.



» Given these choices for P(h) and for P(D|h) we now
have a fully-defined problem for the above BRUTE-
FORCE MAP LEARNING algorithm.



- Step1:
= Let us consider the first step of this algorithm,
which uses Bayes theorem to compute the
posterior probability P(h|D) of each hypothesis h
given the observed training data D.

Recalling Bayes theorem, we have

P(Dlh)P(h)

P(k|D) = D)




- Case 1: h is inconsistent with the training data D.

P(h|D) = ] P‘(F[i? = 0 if h is inconsistent with D

The posterior probability of a hypothesis inconsistent with D is
Zero.



« Case 2: h i1s consistent with D.

1
| |H]

P(D)

!
1+m

|V Sk,pl

|H|
B 1
|V Sy.pl

P(h|D) =

if h is consistent with D




To summarize, Bayes theorem implies that the posterior probability P(h|D)
under our assumed P(k) and P(DJh) is

—L_if h is consistent with D
Vg0l

P(h|D) = (6.9)
0 otherwise



P(h) P(hiD1) P(RID1,D2)

hypotheses
(@)

FIGURE 6.1

Evolution of posterior probabilities P(h|D) with increasing training data. (a) Uniform priors assign
equal probability to each hypothesis. As training data increases first to DL (b), then to D1 A D2
(c), the posterior probability of inconsistent hypotheses becomes zero, while posterior probabilities
increase for hypotheses remaining in the version space.



- The above analysis implies that under our choice for P(h)
and P(D|h), every consistent hypothesis has posterior
probability (1 /|VSyp| ), and every inconsistent
hypothesis has posterior probability o.

- Every consistent hypothesis 1is, therefore, a MAP
hypothesis.



3.2 MAP Hypotheses and Consistent
Learners

- Every hypothesis consistent with D is a MAP
hypothesis



consistent learners:

- We will say that a learning algorithm is a consistent
learner provided it outputs a hypothesis that commits
zero errors over the training examples.

- Given the above analysis, we can conclude that every
consistent learner outputs a MAP hypothesis, if we
assume
s a uniform prior probability distribution over H (i.e., P(h,)

= P(h) for all i, j), and
o deterministic, noise free training data (i.e., P(D|h) = 1 if D
and h are consistent, and o otherwise).



4. MAXIMUM LIKELIHOOD AND LEAST-
SQUARED ERROR HYPOTHESES

- Let’s we consider the problem of learning a
continuous-valued target function.



« A straightforward Bayesian analysis will show
that under certain assumptions any
learning algorithm that minimizes the
squared error between the output
hypothesis predictions and the training
data will output a maximum likelihood
hypothesis.



- Consider the following problem setting:

- Learner L considers an instance space X and a
hypothesis space H consisting of some class of
real-valued functions defined over X (i.e., each h
in H is a function of the form h : X 2 R, where R
represents the set of real numbers).



- The problem faced by L is to learn an unknown
target function f : X - R drawn from H.

- A set of m training examples is provided, where
the target value of each example is corrupted by
random noise drawn according to a Normal
probability distribution.



- More precisely, each training example is a pair
of the form (x;, d;) where
di — f (xl) + ei

s f(x;) : the noise-free value of the target function
s ;2 1s a random variable representing the noise.



- It is assumed that the values of the e; are drawn
independently and that they are distributed
according to a Normal distribution with
Zero mean.

» The task of the learner is to output a maximum
likelihood hypothesis, or, equivalently, a MAP
hypothesis assuming all hypotheses are equally
probable a priori.



2 basic concepts

- probability densities
» Normal distributions.



» First, in order to discuss probabilities over
continuous variables such as e, we must
introduce probability densities.

- The reason, roughly, is that we wish for the total
probability over all possible values of the
random variable to sum to one.



« In the case of continuous variables we cannot
achieve this by assigning a finite probability to
each of the infinite set of possible values for the
random variable.

- Instead, we speak of a probability density for
continuous variables such as e and require that
the integral of this probability density over all
possible values be one.



[n general we will use lower case p to refer to the probability density function,
to distinguish it from a finite probability P (which we will sometimes refer to as
a probability mass). The probability density p(xo) is the limit as € goes to zero,
of % times the probability that x will take on a value in the interval [xp, xp + €).

Probability density function:

| .
plxo) =lm-Plxy <x <xy+¢)

E=



- Second, we stated that the random noise
variable e is generated by a Normal probability
distribution.

» A Normal distribution is a smooth, bell-shaped
distribution that can be completely characterized
by its mean u and its standard deviation o.



- Given this background we now return to the
main 1ssue:

= showing that the least-squared error hypothesis is,
in fact, the maximum likelihood hypothesis within
our problem setting.
- We will show this by deriving the maximum
likelihood hypothesis, but using lower case p to
refer to the probability density



hyr = argmax p(D|h)
heH



- we assume a fixed set of training instances (x, x, ... x,,)
and

« Therefore consider the data D to be the corresponding
sequence of target values D = (d, d, .. .d, ).

- Hered; =1 (x;)) + e;.



- Assuming the training examples are mutually
independent given h,

- we can write P(D|h) as the product of the various
p(d;|h)

| m
ko = argmax [ | p(d; )
he H

=1



- Given that the noise e; obeys a Normal distribution with
zero mean and unknown variance 02, each d; must also
obey a Normal distribution with variance o2 centered
around the true target value f(x;) rather than zero.

- Therefore p(d; |h) can be written as a Normal
distribution with variance 0% and mean u = f (x;)



heH |
- s (d-h(x)
= argmax e
heH ,l_! w’z:rm

We now apply a transformation that is commen in maximum likelthood calcula-
tions: Rather than maximizing the above complicated expression we shall choose
to maximize its (less complicated) logarithm. This is justified because Inp 1s a
monotonic function of p. Therefore maximizing In p also maximizes p.

1 ]
m—argmaxEln = - 57 =k

heH =]




The first term in this expression is a constant independent of k, and can therefore
be discarded, yielding

m

hur = dargimax

di — h(x;))*
ginax ) 22( (x:))

Maximizing this negative quantity is equivalent to minimizing the corresponding
positive quantity.

hur = argmmz 252 (di — h(x:))

heH i

Finally, we can again discard constants that are independent of &.

heH

hur = argrng(df — h(x))? (6.6)

t—



- Thus, Equation shows that the maximum
likelihood hypothesis h;;; is the one that
minimizes the sum of the squared errors
between the observed training values d; and the
hypothesis predictions h(x;).



- Limitations of this problem setting.

» The above analysis considers noise only in the
target value of the training example and does

not consider noise in the attributes describing
the instances themselves.
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Chapter 6: Bayesian Learning

Introduction

« Bayesian reasoning provides a probabilistic approach to
Inference.

« Bayesian learning methods are relevant to our study of machine
learning for two different reasons.

I. Bayesian learning algorithms that calculate explicit
probabilities for hypotheses, such as the naive Bayes
classifier, are among the most practical approaches to
certain types of learning problems.



» For ex : Michie et al.(1994) provide a detailed study
comparing the naive Bayes classifier to other learning
algorithms, including decision tree and neural network
algorithms.

» These researchers show that the naive Bayes classifier is
competitive with these other learning algorithms in many
cases and that in some cases it outperforms these other
methods.

Il. The Bayesian methods are important to our study of
machine learning is that they provide a useful perspective
for understanding many learning algorithms that do not
explicitly manipulate probabilities.



» For ex : We will analyze the algorithms such as the FIND-
S and Candidate-Elimination algorithms to determine the
conditions under which they output the most probable
hypothesis given the training data.

» Bayesian analysis provides an opportunity for the
choosing the appropriate alternative error function(cross
entropy) in neural network learning algorithms.

» We use a Bayesian perspective to analyze the inductive
bias of decision tree learning algorithms that favor short
decision trees and examine the closely related Minimum
Description Length principle.



Features of Bayesian Learning methods

« Each observed training example can incrementally decrease or
Increase the estimated probability that a hypothesis is correct.
This provides a more flexible approach to the learning compared
to the algorithms that completely eliminate a hypothesis if it is
found to be inconsistent with any single example.

* Prior knowledge can be combined with observed data to
determine the final probability of a hypothesis. The prior
probability is got through (i) a prior probability of each candidate
hypothesis (ii) a probability distribution over observed data for
each possible hypothesis.

« Bayesian methods can accommodate hypotheses that make
probabilistic predictions For ex : hypotheses such as “this
pneumonia patient has a 93% chance of complete recovery”



* New instances can be classified by combining the predictions of
multiple hypotheses, weighted by their probabilities.

 Even In cases where Bayesian methods prove computationally
Intractable, they can provide a standard of optimal decision making
against which other practical methods can be measured.

Practical Difficulties in applying Bayesian Methods

« Bayesian methods typically require initial knowledge of many
probabilities.

« The significant computational cost required to determine the Bayes
optimal hypothesis in the general case.



Bayes Theorem

* In machine learning we are interested in determining the best
hypothesis from some space H, given the observed training data D.

« Bayes theorem provides a way to calculate the probability of a
hypothesis based on its prior probability, the probabilities of
observing various data given the hypothesis, and the observed data
itself.

« To define Bayes theorem precisely, let us define the following
notations
» P(h) — denote the initial probability or prior probability that
hypothesis h holds.
» P(D) — denote the prior probability that training data D will be
observed.



» P(D/h) —denote the probability of observing data D given some
world in which hypothesis h holds.

» P(h/D) — denote the posterior probability of h because it
reflects our confidence that h holds after we have
seen the training data D.

« Bayes theorem is the cornerstone of Bayesian learning methods
because it provides a way to calculate the posterior probability
P(h/D) from the prior probability P(h), together with P(D) and
P(D/h)

P(h/D) = =, Z‘;’)’ (%) > Eqn 6.1

* P(h/D) increases with P(h) and with P(D/h) according to Bayes
theorem.



It is also reasonable to see that P(h/D) decreases as P(D) increases,
because the more probable it is that D will be observed
Independent of h, the less evidence D provides in support of h.

In many learning scenarios, the learner considers some set of
candidate hypotheses H and is interested in finding the most
probable hypothesis h eH given the observed data D.

Any such maximally probable hypothesis is called a maximum a
posteriori (MAP) hypothesis.

We can determine the MAP hypotheses by using Bayes theorem to
calculate the posterior probability of each candidate hypothesis.

More precisely, we will say that h,,,, IS a MAP hypothesis
provided:



hMAP = argmax P(th)
heH

o PO P@)
s P(D)

— arfgliax P(D|h)P(h) > E(qn 6.2

* Notice in the final step above we dropped the term P(D) because it
IS a constant independent of h.

* In some cases, we will assume that every hypothesis in H is equally
probable a priori (P(h;) = P(h;) for all h; and h; in H). In this case
we can further simplify Egn 6.2 and need only consider the term
P(D/nh) to find the most probable hypothesis.



* P(D/n) is often called the likelihood of the data D given h, and any
hypothesis that maximizes P(D/h) is called a maximum likelihood

(ML) hypothesis, hy,.

Ay = arﬁl;ax P(D|h) > Eqn 6.3

 In order to make clear the connection to machine learning
problems, we have learnt Bayes theorem above by referring to the
data D as training examples of some target function and referring to

H as the space of candidate target functions.



An Example

« To illustrate Bayes rule, consider a medical diagnosis problem in
which there are two alternative hypotheses:
I. that the patient has a particular form of cancer
ll. that the patient does not

« The available data is from a particular laboratory test with two
possible outcomes: @ (positive) and © (negative).

« \We have prior knowledge that over the entire population of people
only .008 have this disease.

« The test returns a correct positive result in only 98% of the cases Iin
which the disease Is actually present and a correct negative result in
only 97% of the cases in which the disease Is not present.



In other cases, the test returns the opposite result.

The above situation can be summarized by the following
probabilities:

P(mncer) = 008, P(—cancer) = 992
P(®|cancer) = .98, P(B|cancer) = .02
P(&®|—cancer) = .03, P(S|—-cancer) = .97
Suppose we now observe a new patient for whom the lab test

returns a positive result. Should we diagnose the patient as having
cancer or not?

The maximum a posteriori hypothesis can be found using Eqn 6.2:
P(cancer/®) = P(&@/cancer) P(cancer) = 0.98 * 0.008= 0.0078
P(—=cancer/®) = P(&/-cancer) P(—=cancer) = 0.03* 0.992=0.0298



Thus, hy,,p = —Cancer

Notice that while the posterior probability of cancer is significantly
higher than its prior probability, the most probable hypothesis is
still that the patient does not have cancer.

As this example illustrates, the result of Bayesian inference
depends strongly on the prior probabilities, which must be
available in order to apply the method directly.

Basic formulas for calculating probabilities are summarized In
Table 6.1.



e Product rule: probability P(A A B) of a conjunction of two events A and B
P(A A B) = P(A|B)P(B) = P(B|A)P(A)

e Sum rule: probability of a disjunction of two events A and B
P(AV B) = P(A) + P(B)— P(AA B)

e Bayes theorem: the posterior probability P(k#|D) of h given D

P(D}n)P(h)

P(h|D) = PD)

o Theorem of total probability: if events Aq,..., A, are mutually exclusive with ELI P(A;) =1,
then

P(B) = ) _ P(BIA)DP(A)
i=l

Table 6.1: Summary of basic probability formulas
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Bayes Theorem and Concept Learning

« Consider the concept learning problem in which we assume that
learner considers some finite hypothesis space H defined over the
Instance space X, in which the task is to learn some target concept

c:X={0,1}.

« Let us assume that the learner is given some sequence of training
examples <<x;,d;>...<x.,d>> where Xx; Is some instance from X
and where d; is the target value of x; (i.e., d,;=c(x;)).

« To understand in very simple way, let us make one more
assumption that the sequence of instances <X, . . . X,,> is held
fixed, so that the training data D can be written simply as the
sequence of target values D = <4, .. . d>.



« Thus, we can design a straightforward concept learning algorithm
to output the maximum a posteriori hypothesis, based on Bayes
theorem, as follows:

Brute-Force MAP Learning Algorithm

1. For each hypothesis h in H, calculate the posterior probability
P(D|h)P(h)
P (D)

P(h|D) =

2. Output the hypothesis hy,,p With the highest posterior probability
huap = argmax P(k|D)
heH
This algorithm may require significant computation, because it applies
Bayes theorem to each hypothesis in H to calculate P(h/D).



* In order to specify a learning problem for the Brute-force MAP
learning algorithm we must specify what values are to be used for
P(h) and for P(D/h).

 Let us choose them to be consistent with the following
assumptions:
I.  The training data D is noise free (i.e., d; = c(X;)).
Il. The target concept c is contained in the hypothesis space H.
lil. We have no a priori reason to believe that any hypothesis is
more probable than any other.

« Given these assumptions, we specify the value for P(h) in the
following way
» Given no prior knowledge that one hypothesis is more likely
than another, it Is reasonable to assign the same prior
probability to every hypothesis h in H.



» Furthermore, because we assume the target concept Is

contained in H we should require that these prior probabilities
sum to 1.

» Together these constraints imply that we should choose

1
Phy= — forall hin H
( | H | _

* The value for P(D/h) can be specified in the following way:

» P(D/h) is the probability of observing the target values D = <,
...d_> for the fixed set of instances <x; . .. X,> given a world
In which hypothesis h holds.

» Since we assume noise-free training data, the probability of
observing classification d; given h is just 1 if d, = h(x;) and O If
d; # h(x;)



» Therefore,

1 if d; = h(x;) for all d; in D
P(Dh) = > Eqn 6.4

0 otherwise

« Given these choices for P(h) and for P(D/h) we now have a fully-
defined problem for the above Brute-Force MAP learning
algorithm.

* Now, let us consider the first step of this algorithm, which uses
Bayes theorem to compute the posterior probability P(h/D) of each
hypothesis h given the observed training data D.

» Recalling Bayes theorem, we have
P(D|h)P(h)

P(hID) = =




« Case 1: Consider where h is inconsistent with the training data D

» Since Egn 6.4 defines P(D/h) to be 0 when h is inconsistent

with D, we have 0 .
P(h|D) = j:,::;)) — 0 if h is inconsistent with D

The posterior probability of a hypothesis inconsistent with D is
Zero.

e (Case 2:Consider the case where h is consistent with D.

» Since Eqn 6.4 defines P(D/h) to be 1 when h is consistent with
D, we have



. L

P(h I.D) = =

ol

if k& 1s consistent with D

~|VSy.pl

where VS, ; Is the subset of hypotheses from H that are consistent
with D.
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Verification of the value P(D)= |H|D| for concept learning

|VS

* It is easy to verify that P(D)= , because the sum over all

hypotheses of P(h/D) must be one and because the number of
hypotheses from H consistent with D iIs by definition [VS,,

« Alternatively, we can derive P(D) from the theorem of total
probability and the fact that the hypotheses are mutually exclusive

(e., (Vi#])(P(h; ahy) =0))
P(D) =) P(DIh)Ph)

hieH

.
El|H| Eo'ﬁ

h;EVSH D h; ¢VSH, D




« To summarize, Bayes theorem implies that the posterior probability
P(h/D) under our assumed P(h) and P(D/h) is

W_SLT if h is consistent with D

P(h\D) =

0 otherwise > Egn 6.5

where [VSy p| Is the number of hypotheses from H consistent with
D.

 The evolution of probabilities associated with hypotheses is
depicted schematically in figure 6.1. Initially figure 6.1(a) shows
all hypotheses have the same probability. As the training data
accumulates (figure 6.1(b) & figure 6.1(c)) the posterior probability
for Inconsistent hypotheses becomes zero while the total
probability summing to one is shared equally among the remaining
consistent hypotheses.



i i | i
P(h) P(hiD1) i P(hID1,D2)

i

hypotheses | hypotheses hyposes
(@) (b) (c)

Figure 6.1: Evolution of posterior probabilities P(h/D) with increasing training data
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MAP Hypotheses and Consistent Learners

* Given the above analysis, every consistent learner outputs a MAP
hypothesis, If we assume a uniform prior probability distribution
over H (ie, P(h) = P(h;) for all 1, j), and If we assume
deterministic, noise free training data (i.e., P(D/h) = 1 if D and h
are consistent, and O otherwise).

 Forex:

» Consider the Find-S concept learning algorithm. The Find-S
searches the hypothesis space H from specific to general
hypotheses, outputting a maximally specific consistent
hypothesis.

» Because FIND-S outputs a consistent hypothesis, we know that
it will output a MAP hypothesis under the probability
distributions P(h) and P(D/h) defined.



» Actually, FIND-S does not explicitly manipulate probabilities
at all-it simply outputs a maximally specific member of the
Version space.

» However, by identifying distributions for P(h) and P(D/h)
under which its output hypotheses will be MAP hypotheses, we
have a useful way of characterizing the behavior of FIND-S.

* Are there other probability distributions for P(h) and P(D/h)
under which FIND-S outputs MAP hypotheses?

» Yes. Because FIND-S outputs a maximally specific hypothesis
from the version space, its output hypothesis will be a MAP
hypothesis relative to any prior probability distribution that
favors more specific hypotheses.



» More precisely, suppose # 1s any probability distribution P(h)
over H that assigns P(h,) =P(h,) if h, is more specific than h.,,.

» Then it can be shown hat FIND-S outputs a MAP hypothesis
assuming the prior distribution # and the same distribution

P(D/h)

 To summarize, the Bayesian framework allows one way to
characterize the behavior of learning algorithms (e.g., FIND-S),
even when the learning algorithm does not explicitly manipulate
probabilities.



Definitions of various Probability Terms
Random Variable: A random variable, usually written X, Is a
variable whose possible values are numerical outcomes of a random
phenomenon.
There are two types of random variables, discrete and continuous.
For ex : Random variable can be defined for a coin flip as follows

X _{1 if itis head

| 0ifitis tail

Discrete  Random Variable : The variables which can take
distinct/separate values are called discrete random variables.

For ex : Flipping a fair coin, rolling a dice



Continuous Random Variable : The variables which can take any
values in a range are called continuous random variables.

For ex : Height and Weight of the person, Mass of an animal
Probability Distribution : It is a mathematical function that provides
the probabilities of occurrence of different possible outcomes in an
experiment.

Constructing a probability distribution for random variable

 Let us take random variable,
X =no of heads after 3 flips of a fair coin

 Then the probability distribution table can be written as follows:



Outcomes X=0 X=1 |X=2 |X=3

(No of Heads)

Probability 1/8 3/8 3/8 |1/8
11-11-2019 Machine Learning-15CS73
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Maximum Likelihood and Least Squared Error
Hypotheses

* Many learning approaches such as neural network learning, linear
regression and polynomial curve fitting will face a problem of
learning a continuous-valued target function.

« A straightforward Bayesian analysis will show that under certain
assumptions any learning algorithm that minimizes the squared
error between the output hypothesis predictions and the training
data will output a maximum likelihood hypothesis.

« Consider the following problem setting. Learner L considers an
Instance space X and a hypothesis space H consisting of some class
of real-valued functions defined over X. (i.e., each h in H Is a
function of the form h:X — R, where R represents the set of real
numbers).



The problem faced by L is to learn an unknown target function f :
X — R drawn from H.

A set of m training examples is provided, where the target value of
each example iIs corrupted by random noise drawn according to a
Normal probability distribution.

More precisely, each training example is a pair of the form <x;, d.>
where d; = f (x;) + e;. Here f(x;) is the noise-free value of the target
function and e; Is a random variable representing the noise.

It is assumed that the values of the e; are drawn independently and
that they are distributed according to a Normal distribution with
Zero mean.

The task of the learner is to output a maximum likelihood
hypothesis, or, equivalently, a MAP hypothesis assuming all
hypotheses are equally probable-a-priori.



As a simple example of such a problem Is learning a linear
function, though our analysis applies to learning arbitrary real-
valued functions.

The figure 6.2 illustrates a linear target function f depicted by the
solid line, and a set of noisy training examples of this target
function.

The dashed line corresponds to the hypothesis h,, with least-
squared training error, hence the maximum likelihood hypothesis.

The maximum likelihood hypothesis Is not necessarily identical to
the correct hypothesis, f, because it is inferred from only a limited
sample of noisy training data.



i

X

Figure 6.2 :Learning a real-valued function. The target function f corresponds to the
solid line. The training examples (x;, d;) are assumed to have Normally distributed
noise e; with zero mean added to the true target value f(x;). The dashed line
corresponds to the linear function that minimizes the sum of squared errors.
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Review of Basic Concepts from Probability Theory

Probability Density Function
* |In order to know probabilities over continuous variables such as e,
we must know about probability densities.

* The reason, roughly, is that we wish for the total probability over
all possible values of the random variable to sum to one.

Definition : A probability density function (PDF), or density of a
continuous random variable, Is a function that describes the relative
likelihood for this random variable to take on a given value.

* In the case of continuous variables we cannot achieve this by
assigning a finite probability to each of the infinite set of possible
values for the random variable.



Instead, we take a probability density for continuous variables such
as e and require that the integral of this probability density over all
possible values be one.

In general we will use lower case p to refer to the probability
density function, to distinguish it from a finite probability P.

The probability density p(x,) Is the limit as € goes to zero, of % times
the probability that x will take on a value in the interval [X,,X,+€)

The probability density function is

1 .
p(xg}EHJ%EP(xn <X < Xxg+€)
€=



Normal Distribution

« A Normal distribution Is a smooth, bell-shaped distribution that can
be completely characterized by its mean g and its standard deviation
0.

A Normal distribution (also called a Gaussian distribution) is
defined by the probability density function

p(x) = ! o35
V2ol

A Normal distribution is fully determined by two parameters in the
above formula: gz and o

 |f the random variable X follows a normal distribution, then:



» The probability that X will fall into the interval (a,b) Is given by

[ p(x)dx
» The expected, or mean value of X, E[X], Is
E[X]=u
» The variance of X, Var(X), is
Var(X) = ¢*
» The standard deviation of X, oy IS
oy,=0



Prove that Least Squared Hypothesis is Maximum Likelihood
Hypothesis

* \We will show this by deriving the maximum likelihood hypothesis
starting with our earlier definition Eqn 6.3 but using lower case p to
refer to the probability density

hyr = argmax p(D|h)
heH

* We assume a fixed set of training Instances <%, . . . X,> and
therefore consider the data D to be the corresponding sequence of
target values D = <d, .. .d>. Here d; = f(x;)+e;.

« Assuming the training examples are mutually independent given h,
we can write P(D/h) as the product of the various p(di/h)



m

ﬁML = argmax p(dg [h)
1

he H i=

 Given that the noise e; obeys a Normal distribution with zero mean
and unknown variance o7, each d. must also obey a Normal

distribution with variance ¢ centered around the true target value
f(x;) rather than zero.

* Therefore p(di/h) can be written as a Normal distribution with
variance o and mean u= f(x;).

« Let us write the formula for this Normal distribution to describe
p(di/h), beginning with the general formula for a Normal
distribution and then substituting appropriate ¢ and ¢?



« Because we are writing the expression for the probability of d; given
that h is the correct description of the target function f, we will also
substitute p=f(x;)=h(x;), yielding

— s (d;— )
hyr = argmax iﬁ'
heH H ~.a’2ncr
1 . 2
_ argmaxl_[ e G A

heH ;_ 1«/23!6

« We now apply a transformation that is common In maximum
likelihood calculations. Rather than maximizing the above
complicated expression we shall choose to maximize its (less
complicated) logarithm.

 This is justified because In p is a monotonic function of p. Therefore
maximizing In p also maximizes p.



= 1 1
hyi = argmax ) In Nerril G h(x;))?

« The first term in this expression is a constant independent of h, and
can therefore be discarded, yielding

har = argmax (d; — h(x;))
ML thH ; 7g2 i

« Maximizing this negative quantity is equivalent to minimizing the

corresponding positive guantity.
m

, 1
hyur = argmin ) | 5= (d; — h(x)))’

hEH i=1
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Finally, we can again discard constants that are independent of h.

huyr = argmmz (di — h(x;))? — EQqn 6.6
} hecH

Thus, Egn 6.6 shows that the maximum likelihood hypothesis h,,_

the one that minimizes the sum of the squared errors between the
observed training values d; and the hypothesis predictions h(x;)

This holds under the assumption that the observed training values d;
are generated by adding random noise to the true target value, where
this random noise is drawn independently for each example from a
Normal distribution with zero mean.

As the above derivation makes clear, the squared error term (d:-
h(x:))? directly from the exponent in the definition of the Normal
distribution.



Notice the structure of the above derivation involves selecting the
hypothesis that maximizes the logarithm of the likelihood (In
p(D/h)) in order to determine the most probable hypothesis.

This approach of working with the log likelihood is common to
many Bayesian analyses, because it i1s often more mathematically
tractable than working directly with the likelihood.

In all cases, the maximum likelihood hypothesis might not be the
MAP hypothesis, but if one assumes uniform prior probabilities
over the hypotheses then it is.

Minimizing the sum of squared errors IS a common approach in
many neural network, curve fitting, and other approaches to
approximating real-valued functions.



Reason to choose Normal distribution to characterize noise
I. It allows for a mathematically straightforward analysis.

Il. The smooth, bell-shaped distribution is a good approximation to
many types of noise in physical systems.



Maximum Likelihood Hypotheses for Predicting
Probabilities

* Here we will derive criterion for a setting that is common in neural
network learning: learning to predict probabilities.

« Consider the setting in which we wish to learn a nondeterministic
(probabilistic) function f: X—={0,1} , which has two discrete output
values.

* For ex: the instance space X might represent medical patients in
terms of their symptoms, and the target function f(x) might be 1 if
the patient survives the disease and O if not.

* In this case we might well expect f to be probabilistic. For ex:
among a collection of patients exhibiting the same set of observable
symptoms, we might find that 92% survive, and 8% do not.



This unpredictability could arise from our inability to observe all the
Important distinguishing features of the patients, or from some
genuinely probabilistic mechanism in the evolution of the disease.

The effect Is that we have a target function f(x) whose output Is a
probabilistic function of the input.

Given this problem setting, we might wish to learn a neural network
(or other real-valued function approximator) whose output is the
probability that f(x)=1.

In other words, we seek to learn the target function, % X - [0,1],
such that f'(x) = P(f (x) = 1).

In order to learn f*, we can train a neural network directly from the
observed training examples of f, and derive a maximum likelihood
hypothesis for .



 To find a maximum likelihood hypothesis for f* we must first obtain
an expression for P(D/h).

 Let us assume the training data D is of the form D = {<X%;, d,>. . .
<X.,d.>}, where d; is the observed 0 or 1 value for f(x;).

 Thus treating both x; and d; as random variables, and assuming that
each training example is drawn independently, we can write P(D/h)

dS

mn
P(DIh) =[] P(xi, dilh)
i=1 — Egn 6.7
|t is reasonable to assume, that the probability of encountering any
particular instance X; is independent of the hypothesis h. For ex: the
probability that our training set contains a particular patient x; IS
Independent of our hypothesis about survival rates.




* When x Is independent of h we can rewrite the Eqn 6.7 using the
product rule of probability as

P(D\h) = [ | P(xi, dith) = ] P(dith, x) P(x)
i=1

i=1

—>E(gn 6.8

» The probability of P(di/h, x;) of observing d;=1 for a single instance
Xi , given a world in which hypothesis h holds is h(x;) i.e., P(d;=1/h,
X;) = h(x;) and in general

h(x,-) if df =1
P(d;lh, x;) =
(1 — h(xi)) if df =0

> Eqn 6.9



 |In order to substitute Eqn 6.9 into Eqn 6.8 , let us re-express Eqn
6.9 In a more mathematically manipulable form, as

P(dilh, x)) = h(x)* (1 — h(x;))'™*

> Eqgn 6.10

|t is easy to verify that the expressions in Eqn 6.9 and Egqn 6.10 are
equivalent. We can use Egn 6.10 to substitute for P(d./h,x;) in Egn

6.8 to obtain

P(D|h) = ]‘[h(x.)‘f (1 = h(x: )% P(x;)
i=1 > Eqn 6.1




Now we write an expression for the maximum likelihood hypothesis

hyr = argmax | | hG)®* (1 — h(x:)' ™% P(x:)

The last term Is a constant independent of h, so it can be dropped

hapr = argmax | [ 2(x:)% (1 — h(x))'

hef =1 —> EQn 6.12

As In earlier cases, we will find it easier to work with the log of the
likelihood, yielding

hyr = argmade; Inh(x;) + (1 —d;)In(1 — h(x;))

heH ——>EQgn 6.13

i=1
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* Eqgn 6.13 describes the quantity that must be maximized in order to
obtain the maximum likelthood hypothesis in our current problem
setting.

 This result Is analogous to our earlier result showing that
minimizing the sum of squared errors produces the maximum
likelihood hypothesis in the earlier problem setting.



Gradient Search to Maximize Likelihood in a Neural Net

* Let ustake G(h,D) to denote the quantity of Maximum Likelihood
hypotheses for the probabilistic target function.

* Our objective here is to derive a weight-training rule for neural
network learning that seeks to maximize G(h,D) using gradient
ascent.

* The gradient of G(h,D) is given by the vector of partial derivatives
of G(h,D) with respect to the various network weights that define
the hypothesis h represented by the learned network.

* In this case, the partial derivative of G(h,D) with respect to weight
w;, from input k to unit j is



aG(h, D)

aw'ﬂ-

dG(h, D) 3h(x;)
dh(x) Owy

I

dh{x;) dwjx

di —h(x;)  3h(x;)
h(x)(1 = h(x:)) Bwj Eqn 6.14

i=1
i 3(d; Inh(x;) + (1 —dy) In(1 — h(x;))) 9h(x;)
i=1
"%

« Suppose our neural network is constructed from a single layer of
sigmoid units then we have

Ohxi) _ s (xi)xijie = h(x)(1 — h(xi))xiji
dw;jx

where X;;. is the kK™ input to unit j for the i™ training example, and
o (X) Is the derivative of the sigmoid squashing function
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* Finally, substituting this expression into Egn 6.14, we obtain a
simple expression for the derivatives that constitute the gradient

0G(h, D)
Bwjk

= Z(df — h(x;)) Xij

i=1

« Because we seek to maximize rather than minimize P(D/h), we
perform gradient ascent rather than gradient descent search. On each
Iteration of the search the weight vector is adjusted in the direction

of the gradient, using the weight update rule

Wik < Wik + AWy

where,

Awj = ??Z(di — h(x:)) xijx
=1 > Eqn 6.15




where nis a small positive constant that determines the step size of
the gradient ascent search.

« Comparing this weight-update rule to the weight-update rule used
by the Backpropagation algorithm we can get

Wix < Wik + Awji
where,

Awje =1 ) k()1 —h(x))(d; — h(x:)) xiju

i=1

Notice this is similar to the rule given in Egn 6.15 except for

the extra term h(X)(I - h(x;)), which is the derivative of the sigmoid
function.



Minimum Description Length Principle

 The Minimum Description Length principle Is motivated by
Interpreting the definition of hy,,, In the light of basic concepts
from information theory.

 Consider the definition of hy,,p
hmap = argmax P(DIh)P(h)
heH

which can be equivalently expressed in terms of maximizing the
log2

huap = argmax log, P(D|h) + log, P(h)
heH

or alternatively, minimizing the negative of this quantity



hyap = arfé'gm —log, P(D|h) — log, P(h) + Eqn 6.16

« EqQn 6.16 can be interpreted as a statement that short hypotheses are
preferred, assuming a particular representation scheme for encoding
hypotheses and data.

* To explain this, let us take a basic result from information theory:
Consider the problem of designing a code to transmit messages
drawn at random, where the probability of encountering message 1 is

P

 We are interested here In the most compact code i.e., we are
Interested in the code that minimizes the expected number of bits we
must transmit in order to encode a message drawn at random.



Clearly, to minimize the expected code length we should assign
shorter codes to messages that are more probable.

Shannon and Weaver (1949) showed that the optimal code(i.e., the
code that minimizes the expected message length) assigns —log,p;
bits to encode message i .

The number of bits required to encode message 1 using code C will
be referred as the description length of message 1 with respect to C,
which is denoted as L (1).

Let us interpret Egn 6.16 Iin the perspective of the above result from
coding theory

» -log,P(h) is the description length of h under the optimal
encoding for the hypothesis space H.



In our notation, L, (h) = -log,P(h), where C,, Is the optimal code
for hypothesis space H.

» -log,P(D/h) is the description length of the training data D given
hypothesis h, under its optimal encoding. In our notation,
Lc, /h(D/h) = - log,P(D/h), where C,,, Is the optimal code for

describing data D assuming that both the sender and receiver
know the hypothesis h.

» Therefore we can rewrite Egn 6.16 to show that h,,,» Is the
hypothesis h that minimizes the sum given by the description
length of the hypothesis plus the description length of the data
given the hypothesis.

hmap = argmin Lc, (h) + Lc,, (D|h)
h



where C,, and Cy,, are the optimal encodings for H and for D given
h, respectively.

 The Minimum Description Length (MDL) principle recommends
choosing the hypothesis that minimizes the sum of these two
description lengths.

 To apply this principle in practice we must choose specific
encodings or representations appropriate for the given learning task.

* Assuming we use the codes C; and C, to represent the hypothesis
and the data given the hypothesis, we can state the MDL principle
as

hypr = argmin Le, (B) + L¢,(D|h)
heH > Eqn 6.17




* The above analysis shows that if we choose C, to be the optimal
encoding of hypotheses C,,, and if we choose C, to be the optimal
encoding Cp;, then hy,p. = hyap-



« Conclusions from MDL Principle

 Does MDL principle prove once and for all that short
hypotheses are best?

* No. We have only shown that if a representation of hypotheses
IS chosen so that the size of hypothesis h is -log,P(h), and if a
representation for exceptions is chosen so that the encoding
length of D given h is equal to —log,P(D/h), then the MDL
principle produces MAP hypotheses.



Naive Bayes Classifier

* One highly practical Bayesian learning method is the naive Bayes
learner, often called the Naive Bayes classifier.

« The Naive Bayes algorithm is a method that uses the probabilities
of each attribute belonging to each class to make a prediction.

* In some domains its performance has been shown to be comparable
to that of neural network and decision tree learning.

11-11-2019 Machine Learning-15CS73 68



* The naive Bayes classifier applies to learning tasks
where each instance x Is described by a conjunction
of attribute values and where the target function f(x)
can take on any value from some finite set V.

« A set of training examples of the target function is
provided, and a new instance is presented, described
by the tuple of attribute values <a,, a,.. .a,>.



« The learner is asked to predict the target value, or classification, for
this new instance.

« The Bayesian approach to classifying the new Instance is to assign

the most probable target value, vy ap given the attribute values <a,
a, .. .a, > that describe the instance

vmap = argmax P(v;la), az...ay)
l{;Ev

* \We can use Bayes theorem to rewrite this expression as

P(ay,az...a,|v;)P(v;)
Urs AP argmax

eV P(ay,az...a,)

argmax P(ay,az...an|v))P(v;) — £one1g
t.FjEi"r
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Now we could attempt to estimate the two terms in Eqn 6.19 based
on the training data.

It Is easy to estimate each of the P(v;) simply by counting the
frequency with which each target value v; occurs in the training
data.

However, estimating the different P(a, a,.. . a,/v;) terms in this
fashion Is not feasible unless we have a very, very large set of
training data.

The problem is that the number of these terms is equal to the
number of possible instances times the number of possible target
values.

Therefore, we need to see every instance in the instance space many
times in order to obtain reliable estimates.



Assumption
The naive Bayes classifier is based on the simplifying assumption that
the attribute values are conditionally independent given the target

value.

* From this assumption it is possible to say that given the target value
of the instance, the probability of observing the conjunction
a,,a,...a, IS Just the product of probabilities for the individual

attributes:
P(a,a,....ap/v)) = I1; P(ai/vj)

Substituting this into Egn 6.19, we have the approach used by the
Nalve Bayes classifier.



vyp = argmax P(v;) 1_[ P{a;|v;)

u_,E'l"

> Eqn 6.20

where v,z denotes the target value output by the Naive Bayes
classifier.

* Thus, In ain a Naive Bayes classifier the number of distinct P(a;/v;)
terms that must estimated from the training data is just the number
of distinct attribute values times the number of distinct target
values- a much smaller number compared to estimating
P(a;,ay,....a./vj).

« To summarize, the naive Bayes learning method involves a learning
step In which the various P(v;) and P(a;j/v;) terms are estimated,
based on their frequencies over the training data.



* The set of these estimates corresponds to the learned hypothesis.
This hypothesis is then used to classify each new instance by
applying the rule in Egn 6.20.

* Whenever the naive Bayes assumption of conditional independence
IS satisfied, this naive Bayes classification v,z Is identical to the
MAP classification.

* One Interesting difference between the naive Bayes learning method
and other learning methods we have considered is that there Is no
explicit search through the space of possible hypotheses.



An lllustrative Example

« Let us apply the naive Bayes classifier to a concept learning
problem we considered during our discussion of decision tree
learning: classifying days according to whether someone will play
tennis(PlayTennis).

« Table 3.2 provides a set of 14 training examples of the target
concept PlayTennis, where each day is described by the attributes
Outlook, Temperature, Humidity, and Wind.

« Here we use the naive Bayes classifier and the training data from
this Table 3.2 to classify the following novel instance:

<Qutlook = sunny, Temperature = cool, Humidity = high, Wind =
strong>



Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

11-11-2019
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e Qur task Is to predict the target value (yes or no) of the target
concept PlayTennis for this new instance.

 Instantiating Egn 6.20 to fit the current task, the target value VNB Is
given by

Ung = arlgmax] P(Uj) l-h P(a,-lvj)
v;€{yes,no

= argmax P(vj)  P(Outlook = sunny|v;) P(T emperature = cool |v;)

v;€(yes,no}

- P(Humidity = high|v;)P(Wind = stronglv;)  (6.21)
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Estimating probabilities of attribute values and target value from
training data

Probabilities of Target Value(PlayTennis)

PlayTennis P(Yes)/P(No)

Yes 9 9/14

No 5 5/14
Total 14

Probabilities of Outlook Attribute values

Yes No P(Yes) P(No)
Sunny 2 3 2/9 3/5
Overcast 4 0 4/9 0/5
Rain 3 2 3/9 215
Total 9 5
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Probabilities of Temperature Attribute Values

Yes No P(Yes) P(No)

Hot 2 2 2/9 4/5
Mild 4 2 4/9 2/5
Cool 3 1 3/9 1/5
Total 9 5

Probabilities of Humidity Attribute Values
Yes No P(Yes) P(No)

Normal 6/9 1/5

High 3 4 3/9 4/5

Total

11-11-2019
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Probabilities of Wind Attribute Values

Yes No P(Yes) P(No)
Strong 3 3 3/9 3/5
Weak 6 2 6/9 2/5
Total 9 5

« Using these probability estimates and similar estimates for the
remaining attribute values, we calculate v\g according to Egn 6.21
as follows:

For v; = Yes
Vg = P(Yes) P(Sunny/Yes) P(Cool/Yes) P(High/Yes) P(Strong/Yes)
=9/14 * 2/9 * 3/9 * 3/9 * 3/9

= 0.00529



For v; = No

Vg = P(No) P(Sunny/No) P(Cool/No) P(High/No) P(Strong/No)
=5/14 * 3/5* 1/5* 4/5 * 3/5
=0.020571

« Thus, the naive Bayes classifier assigns the target value PlayTennis
= No to this new iInstance, based on the probability estimates
learned from the training data.



RID Age Income | Student | Credit_Rating | Buys Computer
1 Youth High No Fair No
2 Youth High No Excellent No
3 Middle aged High No Fair Yes
4 Senior Medium No Fair Yes
5 Senior Low Yes Fair Yes
6 Senior Low Yes Excellent No
7 Middle_aged Low Yes Excellent Yes
8 Youth Medium No Fair No
9 Youth Low Yes Fair Yes

10 Senior Medium Yes Fair Yes
11 Youth Medium Yes Excellent Yes
12 Middle _aged | Medium No Excellent Yes
13 Middle_aged High Yes Fair Yes
14 Senior Medium No Excellent No

Table 3.2:Training examples for the target concept Buys Computer

11-11-2019 Machine Learning-15CS73 82




Estimating Probabilities

 Till now, we have estimated probabilities by the fraction of times the
event is observed to occur over the total number of opportunities.

* For ex : we estimated P(Wind = strong|Play Tennis = no) by the
fraction % where n = 5 is the total number of training examples for

which PlayTennis = no, and n= 3 is the number of these for which
Wind = strong.

« While this observed fraction provides a good estimate of the
probability in many cases, it provides poor estimates when n_ is very
small.

 To see the difficulty, for time being let us imagine that the value of
P(Wind = strong | PlayTennis = no) is .08 and that we have a
sample containing only 5 examples for which PlayTennis = no.



* Then the most probable value for n, is O which raises two
difficulties:

I % produces a biased underestimate of the probability.

1. when this probability estimate is zero, this probability term
will dominate the Bayes classifier if the future query contains
Wind = strong.

 To avoid this difficulty we can adopt a Bayesian approach to
estimating the probability, using the m-estimate defined as follows:

R. -+ mp
n+m

> Eqn 6.22



Here, n. and n are defined as before, p is our prior estimate of the
probability we wish to determine and m Is a constant called the
equivalent sample size which determines how heavily to weight p
relative to the observed data.

A typical method for choosing p in the absence of other information
IS to assume uniform priors, i.e., If an attribute has k possible values

1
we setp =—.

For ex: in estimating P(Wind = Strong | PlayTennis = no) we note
the attribute Wind has two possible values, so uniform priors would
correspond to choosing p = 0.5.

Note that in Eqn 6.22 if m is zero, then m-estimate is equivalent to
the simple fraction % .



 |If both n and m are nonzero, then the observed fraction % and prior
p will be combined according to the weight m.

* The reason m is called the equivalent sample size is that Eqn 6.22
can be interpreted as augmenting the n actual observations by an
additional m virtual samples distributed according to p.



Bayesian Belief Networks

« The naive Bayes classifier makes significant use of the assumption
that the values of the attributes a, . . .a, are conditionally
Independent given the target value v.

« This assumption dramatically reduces the complexity of learning the
target function.

« When it is met, the naive Bayes classifier outputs the optimal Bayes
classification. However, In many cases this conditional
Independence assumption is clearly overly restrictive.

« A Bayesian belief network describes the probability distribution
governing a set of variables by specifying a set of conditional
Independence assumptions along with a set of conditional
probabilities.



In contrast to the naive Bayes classifier, which assumes that all the
variables are conditionally independent given the value of the target
variable, Bayesian belief networks allow stating conditional
Independence assumptions that apply to subsets of the variables.

Thus, Bayesian belief networks provide an intermediate approach
that Is less constraining than the global assumption of conditional
Independence made by the naive Bayes classifier.

Bayesian belief networks more tractable than avoiding conditional
Independence assumptions altogether.

In general, a Bayesian belief network describes the probability
distribution over a set of variables. Consider an arbitrary set of
random variables Y, . . . Y,, where each variable Y; can take on the
set of possible values V(Y;).



* \We define the joint space of the set of variables Y to be the cross
product V(Y,) x V(Y,) x ... V(Y,). Each item In the joint space
corresponds to one of the possible assignments of values to the tuple
of variables <Y,...Y >

« The probability distribution over this joint space is called the joint
probability distribution.

« A Bayesian Dbelief network describes the joint probability
distribution for a set of variables.



Conditional Independence

« Let X, Y, and Z be three discrete-valued random variables. \We say
that X is conditionally independent of Y given Z if the probability
distribution governing X is independent of the value of Y given a
value for Z i.e., If

(Vxhyszj;) P(X =x;|Y =y, £ =)= PX =x;|Z =z)

where x;eV(X), y; € V(Y), and z,e V(2).

« We commonly write the above expression in abbreviated form as
P(X|Y, Z2) = P(X | Z). This definition of conditional independence
can be extended to sets of variables as well.

 We say that the set of variables X; . . . X, Is conditionally
Independent of the set of variables Y, . . . Y, given the set of
variables Z, . .. Z if



PXy... X)W1 Y Zio. . Zy) = P(X1 ... X\ Z1 ... Zp)

* The correspondence can be drawn between this definition and our
use of conditional ,independence in the definition of the naive Bayes
classifier.



Bayesian Belief Network Representation

« A Bayesian belief network (Bayesian network for short) represents
the joint probability distribution for a set of variables.

* For example, the Bayesian network in figure 6.3.1 represents the
joint probability distribution over the boolean variables Storm,
Lightning, Thunder, ForestFire, Campfire, and BusTourGroup.

* In general, a Bayesian network represents the joint probability
distribution by specifying a set of conditional independence
assumptions (represented by a directed acyclic graph), together with
sets of local conditional probabilities.

« Each variable in the joint space is represented by a node in the
Bayesian network



Bayesian Belief Network Representation

« A Bayesian belief network (Bayesian network for short) represents
the joint probability distribution for a set of variables.

* For example, the Bayesian network in figure 6.3.1 represents the
joint probability distribution over the boolean variables Storm,
Lightning, Thunder, ForestFire, Campfire, and BusTourGroup.

* In general, a Bayesian network represents the joint probability
distribution by specifying a set of conditional independence
assumptions (represented by a directed acyclic graph), together with
sets of local conditional probabilities.

« Each variable in the joint space is represented by a node in the
Bayesian network
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 For each variable two types of information are specified.
I.  The network arcs represent the assertion that the variable is
conditionally independent of its nondescendants in the network
given its Iimmediate predecessors in the network. We say X Is a
descendant of Y If there Is a directed path from Y to X.

Il. A conditional probability table is given for each variable,
describing the probability distribution for that variable given
the values of its immediate predecessors.

 The joint probability for any desired assignment of values <y, , .. .,
y,~> 1o the tuple of network variables <Y, ... Y > can be computed
by the formula

P(yi,....y) = | | PGil Parents(¥)))
i=l1



where Parents(Y;) denotes the set of immediate predecessors of Y;
In the network.

* Let us Iillustrate the Bayesian network given in figure 6.3.1 which
represents the joint probability distribution of boolean variables
Storm, Lightning, Thunder, ForestFire, Campfire, and
BusTourGroup.

 Consider the node Campfire. The network nodes and arcs represent
the assertion that Campfire is conditionally independent of its
nondescendants Lightning and Thunder, given its immediate
parents Storm and BusTourGroup.

« This means that once we know the value of the variables Storm and
BusTourGroup, the variables Lightning and Thunder provide no
additional information about Campfire.



 The figure 6.3.2 below shows the conditional probability table
associated with the variable Campfire.

5.8 S-~B -S58B 58 -B
O 0.4 0.1 0.8 0.2
— 0.6 0.9 0.2 0.8

Figure 6.3.2: The conditional Probability Table for Campfire node

« The top left entry in this table, for ex: expresses the assertion that
P(Campfire=True| Storm=True, BusTourGroup=True)=0.4

* Note this table provides only the conditional probabilities of
Campfire given its parent variables Storm and BusTourGroup.
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* The set of local conditional probability tables for all the variables,
together with the set of conditional independence assumptions
described by the network, describe the full joint probability
distribution for the network.

* One attractive feature of Bayesian belief networks is that they allow
a convenient way to represent causal knowledge such as the fact that
Lightning causes Thunder.



Learning in Bayesian Belief Networks

« Can we devise effective algorithms for learning Bayesian belief
networks from training data?

« Several different settings for this learning problem can be
considered.
I.  First, the network structure might be given In advance, or it
might have to be inferred from the training data.
Il.  Second, all the network variables might be directly observable
In each training example, or some might be unobservable.

 |In the case where the network structure is given in advance and the
variables are fully observable in the training examples, learning the
conditional probability tables is straightforward.



We simply estimate the conditional probability table entries just as
we would for a naive Bayes classifier.

In the case where the network structure is given but only some of
the variable values are observable in the training data, the learning
problem is more difficult.

This problem is somewhat analogous to learning the weights for the
hidden units In an artificial neural network, where the input and
output node values are given but the hidden unit values are left
unspecified by the training examples.

Russell et al.(1995) proposed a gradient ascent procedure that learns
entries in conditional probability tables.

This gradient ascent procedure searches through a space of
hypotheses that corresponds to the set of all possible entries for the
conditional probability tables:



Learning Structure of Bayesian Networks

* Learning Bayesian networks when the network structure is not
known In advance is also difficult.

« Cooper and Herskovits (1992) present a Bayesian scoring metric for
choosing among alternative networks.

« They also present a heuristic search algorithm called K2 for learning
network structure when the data is fully observable.

 Constraint-based approaches to learning Bayesian network structure
have also been developed



The EM Algorithm

In many practical learning settings, only a subset of the relevant
Instance features might be observable.

For ex : In training our or using the Bayesian belief network we
might have data where only a subset of the network variables
Storm, Lightning, Thunder, ForestFire, Campfire, and
BusTourGroup have been observed.

Many approaches have been proposed to handle the problem of
learning in the presence of unobserved variables.

The EM algorithm (Dempster et al. 1977), a widely used approach
for learning in the presence of unobserved variables.



 The EM algorithm can be used even for variables whose value Is
never directly observed, provided the general form of the
probability distribution governing these variables is known.

« The EM algorithm has been used to train Bayesian belief networks
as well as radial basis function networks.

« The EM algorithm 1is also the basis for many unsupervised
clustering algorithms.



Estimating Means of k Gaussians

« Consider a problem in which the data D is a set of instances
generated by a probability distribution that is a mixture of k distinct
Normal distributions.

* This problem setting is illustrated in figure 6.4 for the case where k
= 2 and where the instances are the points shown along the x-axis.

« Each instance is generated using a two-step process.
I.  One of the k Normal distributions is selected at random.
Il. A single random instance X; Is generated according to this

selected distribution.

This process Is repeated to generate a set of data points as shown in
figure 6.4



p(x)

Figure 6.4 : Instances generated by a mixture of two Normal distributions with
identical variance o
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Let us consider a special case, where the selection of the single
Normal distribution at each step is based on choosing each with
uniform probability, where each of the k Normal distributions has
the same variance o&°.

The learning task is to output a hypothesis h = <g,... @ > that
describes the means of each of the k distributions.

This task involves finding a maximum likelihood hypothesis for
these means; i.e., a hypothesis h that maximizes p(D/h).

It Is easy to calculate the maximum likelihood hypothesis for the
mean of a single Normal distribution given the observed data
Instances Xy, X,, . . ., X, drawn from this single distribution



« Restating Eqn 6.6 using our current notation, we have

m
Py = argmin )~ (x; — 1)°
#oi=l

> Eqn 6.27

 In this case, the sum of squared errors IS minimized by the sample
mean

1
H*ML=;I'Z-IE

i=1 > Eqgn 6.28
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Necessity for EM Algorithm

* Our problem involves a mixture of k different Normal distributions,
and we cannot observe which instances were generated by which
distribution.

 Thus, we have a prototypical example of a problem involving
hidden variables.

 In the example of figure 6.4 we can think of the full description of
each instance as the triple <x;, z,;, z;,>, where X; Is the observed

value of the i" instance and where z;; and z;, indicate which of the two
Normal distributions was used to generate the value x;.

* Here Xx; Is the observed variable in the description of the instance,
and z;; and z;, are hidden variables.



* If the values of z;; and z;, were observed, we could use Egn 6.27 to
solve for the means g and w,. Because they are not, we will instead
use the EM algorithm.

* Applied to our k-means problem the EM algorithm searches for a
maximum likelihood hypothesis by repeatedly re-estimating the
expected values of the hidden variables z; given Its current

hypothesis using these expected values for the hidden variables.



Describing an instance of EM
algorithm

* Applied to the problem of estimating the two means
for figure 6.4, the EM algorithm first initializes the

hypothesis to h=<w,u,>, where g and u, are
arbitrary initial values.

« |t then iIteratively re-estimates h by repeating the

following two steps until the procedure converges to
a stationary value for h.



Step 1: Calculate the expected value E[z;] of each hidden variable z;,
assuming the current hypothesis h= <u,,,> holds.

Step 2: Calculate a new maximum likelihood hypothesis h' = <g, *
M, >, assuming the value taken on by each hidden variable z;
Is its expected value E[z;] calculated in Step 1. Then replace

the hypothesis h= <, 1,> by the new hypothesis h' = <y, ’
I, > and Iterate.



Implementation of steps In practice

» Step 1 must calculate the expected value of each z;.
This E[z;] 1s just the probability that instance x; was
generated by the j* Normal distribution



px = xilp = p)
Ei:l p(x = x;|p = pn)

Elz;] =

1. 2
e"“ﬂfxi —Hj)

2 _I_E(If _.u'n}z
n=1 €

« Thus the first step is implemented by substituting the current values
<u,, i,>and the observed x; into the above expression.

* In the second step we use the E[z;] calculated during Step 1 to
derive a new maximum likelihood hypothesis h' = <g, | &, >. The
maximum likelihood hypothesis in this case is given by

o 21 Elzgl X
S ST
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* Our new expression is just the weighted sample mean for x4, with
each Instance weighted by the expectation E[z;] that it was
generated by the jt Normal distribution.



General Statement of EM Algorithm

* The EM algorithm can be applied in many settings where we wish
to estimate some set of parameters @ that describe an underlying
probability distribution, given only the observed portion of the full
data produced by this distribution.

* In the two-means example the parameters of interest were 8 =
<uw,,>, and the full data were the triples <X;, z;;, z;, > of which
only the x; were observed.

* Ingeneral let X ={x,, ..., X} denote the observed data in a set of
m independently drawn instances, let Z = {z,, . . ., z,,} denote the
unobserved data in these same instances, and let Y = X U Z denote
the full data.



The unobserved Z can be treated as a random variable whose
probability distribution depends on the unknown parameters € and
on the observed data X.

Similarly ,Y is a random variable because it is defined in terms of
the random variable Z.

We use h to denote the current hypothesized values of the
parameters @, and h' to denote the revised hypothesis that Is
estimated on each iteration of the EM algorithm.

The EM algorithm searches for the maximum likelihood hypothesis
h' by seeking the h' that maximizes E[In P(Y | h")].



 Let us consider exactly what this expression signifies
I.  First, P(Y | h) is the likelthood of the full data Y given
hypothesis h'. It iIs reasonable that we wish to find a h' that
maximizes some function of this quantity.

Il.  Second, maximizing the logarithm of this quantity In P(Y | h’)
also maximizes P(Y | h).

1. Third, we introduce the expected value E[In P(Y | h)] because
the full data Y is itself a random variable.

« Given that the full data Y is a combination of the observed data X
and unobserved data Z, we must average over the possible values of
the unobserved Z, weighting each according to its probability.

 In other words we take the expected value E[In P(Y | h')] over the
probability distribution governing the random variable Y.



* Let us define a function Q(h’| h) that gives E[In P(Y | h')] as a
function of h', under the assumption that & = h and given the
observed portion X of the full data Y.

Q(K'|h) = E[In p(Y |h')|R, X]

* In its general form, the EM algorithm repeats the following two
steps until convergence:

Step 1: Estimation (E) step:
Calculate Q(h“| h) using the current hypothesis h and the observed
data X to estimate the probability distribution over Y.

Q(K'|h) = E[ln p(Y |h')|R, X]



Step 2: Maximization(M) step:
Replace hypothesis h by the hypothesis h' that maximizes this Q
function.

h « argglax Q(H'|h)

When the function Q is continuous, the EM algorithm converges to a
stationary point of the likelihood function P(Y/h").



Derivation of k Means Algorithm

« To illustrate the general EM algorithm, let us use it to derive the
algorithm for estimating the means of a mixture of k Normal
distributions.

* In the k-means objective is to estimate the parameters 8 = <w,..u >
that define the means of the k Normal distributions.

* We are given the observed data X = {<X;>}.The hidden variables Z
= {<Zy,. . ., >} In this case indicate which of the k Normal
distributions was used to generate X;.

* To apply EM we must derive an expression for Q(h ‘| h) that applies
to our k-means problem.

 First, let us derive an expression for In p(Y | h)



» The probability p(y; | h') of a single Instance y;= <Xi, z;;, . . . ;> If
the full data can be written as

1 —_ k =i Y2
p(}’ilhr) = P(IirZila C ey Ziklhr) = \/2_2_3 1-}52}-1 Zij (% ﬂ’})
o

 Given this probability for a single instance p(y; \ h’), the logarithm
of the probability In P(Y \ h) for all m instances in the data is

InP(Y|K) = In [Tp0:ln)
i=1

=Y Inp(yln)
i=1 _
m 1 1 k

= ln — i 732
; ( ,_*231*0-2 | 2{1"2 ;z _;(xi ﬁj) )
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* Finally we must take the expected value of this In P(Y \ h) over the
probability distribution governing Y. The above expression for In
P(Y \'h’) is a linear function of these z;. In general, for any function
f(z) that is a linear function of z, the following equality holds

E[t(2)] = 1(E[z])

 This general fact about linear functions allows us to write

Ny = 1 1 4 ra2
E[ln P(Y|h)] = E I;_Zl (ln T ~ 5.3 ;Zij(xi — i) )]

o2 s )

) Jj=1




* To summarize, the function Q(h ‘| h) for the k means problem is

R - I
O |h)=Zj(1n =% EZE[Z;;](-I; ) )

i=1

where h' = <g, ;. .. .4, >and where E[z;] Is calculated based on
the current hypothesis h and observed data X. \We know that

E—ﬁ(ﬂ—#j)z

Elz;i]l = ,
| Zf{t:l E_E-T(Ir-ﬂ-n}l N Eqn 629

Thus, the first (estimation) step of the EM algorithm defines the Q
function based on the estimated E[z;] terms.

* The second (maximization) step then finds the values 4, *. . . g "that
maximize this Q function. In the current case



i I 1 k
ar (W'|h) = argmax In — E AL
gmax Q(h k) = argn 1( Tonat 37 & Pl ‘"’*’))

j=1

m k
= argmin Elzi1(x; — u})?
argr ;; [z 1(xi — 1) - CEqn 6.30
Thus, the maximum likelihood hypothesis here minimizes a weighted
sum of squared errors, where the contribution of each instance Xx; to the

error that defines g “Is weighted by E[z;]

* The quantity given by Eqn 6.30 Is minimized by setting each 4 "to
the weighted sample mean

> i~1 Elz] > Eqn 6.31

Mj <
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