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Introduction to Machine Learning
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What is Machine Learning?

* Machine learning is an application of artificial
intelligence (Al) that provides systems the
ability to automatically learn and improve
from experience without being explicitly
programmed.

* Machine learning focuses on the
development of computer programs that can
access data and use it learn for themselves.



 The process of learning begins with observations
or data, such as examples, direct experience, or
instruction, in order to look for patterns in data
and make better decisions in the future based on
the examples that we provide.

* The primary aim is to allow the computers learn
automatically without human intervention or
assistance and adjust actions accordingly.
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e https://www.artificial-
intellisence.blog/news/how-companies-use-
machine-learning
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Some successful applications of
machine learning

Learning to recognize spoken words
Learning to drive an autonomous vehicle

Learning to classify new astronomical
structures

Learning to play world-class backgammon.
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* Learning to recognize spoken words

* For example, the SPHINX system (e.g., Lee 1989)
learns speaker-specific strategies for recognizing
the primitive sounds and words from the
observed speech signal.

* Neural network learning methods (e.g., Waibel et
al. 1989) and methods for learning hidden
Markov models (e.g., Lee 1989) are effective for
automatically customizing to individual speakers,
vocabularies, microphone characteristics,
background noise, etc.



* Learning to drive an autonomous
vehicle

Machine learning methods have been used to
train computer-controlled vehicles to steer
correctly when driving on a variety of road types.

For example, the ALVINN system (Pomerleau
1989) has used its learned strategies to drive
unassisted at 70 miles per hour for 90 miles on
public highways among other cars.

Similar techniques have possible applications in
many sensor-based control problems.



* Learning to classify new
astronomical structures

 Machine learning methods have been applied to
a variety of large databases to learn general
regularities implicit in the data.

* For example, decision tree learning algorithms
have been used by NASA to learn how to classify
celestial objects from the second Palomar
Observatory Sky Survey (Fayyad et al. 1995).

* This system is now used to automatically classify
all objects in the Sky Survey, which consists of
three terrabytes of image data.
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* Learning to play world-class
backgammon.

The most successful computer programs for playing
games such as backgammon are based on machine
learning algorithmes.

For example, the world's top computer program for
backgammon, TD-GAMMON(Tesauro 1992, 1995)
learned its strategy by playing over one million practice
games against itself.

It now plays at a level competitive with the human
world champion.

Similar techniques have applications in many practical
problems where very large search spaces must be
examined efficiently.
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Outline

1.1 WELL-POSED LEARNING PROBLEMS
1.2 DESIGNING A LEARNING SYSTEM

1.3 PERSPECTIVES AND ISSUES IN MACHINE
LEARNING
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1.1 WELL-POSED LEARNING
PROBLEMS

* Definition: A computer program is said to
learn from experience E with respect to some
class of tasks T and performance measure P,
if its performance at tasks in T, as measured
by P, improves with experience E.
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* In general, to have a well-defined learning
problem, we must identity these three
features:

— the class of tasks (T)
— the measure of performance to be improved (P)
— and the source of experience (E)



A checkers learning problem:

* Task T: playing checkers

 Performance measure P:
percent of games won
against opponents

* Training experience E:
playing  practice games
against itself
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A handwriting recognition learning
problem:

e Task T: recognizing and

classifying handwritten
words within images

Performance measure P:
percent of words
correctly classified

Training experience E: a
database of handwritten
words with given
classifications
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A robot driving learning problem:

* Task T: driving on public four- .
lane highways using vision
Sensors

* Performance measure P:
average distance traveled
before an error (as judged by
human overseer)

* Training experience E. a
sequence of images and
steering commands recorded
while observing a human
driver
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1.2 DESIGNING A LEARNING SYSTEM

Consider:

 desighing a program to learn to play
checkers, with the goal of entering it in the
world checkers tournament.

 We adopt the obvious performance measure:
the percent of games it wins in this world
tournament.
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1.2.1 Choosing the Training Experience
1.2.2 Choosing the Target Function

1.2.3 Choosing a Representation for the
Target Function

1.2.4 Choosing a Function Approximation
Algorithm

1.2.5 The Final Design



1.2.1 Choosing the Training
Experience

* The first design choice we face is to choose
the type of training experience from which
our system will learn.

* The type of training experience available can
have a significant impact on success or failure
of the learner.
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Training experience
Key Attribute-1

* Whether the training experience provides
direct or indirect feedback regarding the
choices made by the performance system.
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* For example, in learning to play checkers:

— the system might learn from direct training examples
consisting of individual checkers board states and the
correct move for each.

— Alternatively, it might have available only indirect
information consisting of the move sequences and
final outcomes of various games played.



* |n this later case, information about the correctness
of specific moves early in the game must be inferred
indirectly from the fact that the game was eventually
won or lost.

e Here the learner faces an additional problem of
credit assignment, or determining the degree to
which each move in the sequence deserves credit or
blame for the final outcome.



* Credit assignment can be a particularly
difficult problem because the game can be
lost even when early moves are optimal, if
these are followed later by poor moves.

* Hence, learning from direct training feedback

is typically easier than learning from indirect
feedback.



Training experience
Key Attribute-2

* The degree to which the learner controls the
sequence of training examples.
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*The learner might rely on the teacher to select
informative board states and to provide the correct
move for each.

**The learner might itself propose board states that it
finds particularly confusing and ask the teacher for the
correct move.

**The learner may have complete control over both the
board states and (indirect) training classifications, as it
does when it learns by playing against itself with no
teacher present.



Training experience
Key Attribute-3

* How well it represents the distribution of
examples over which the final system
performance P must be measured.
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* |[n general, learning is most reliable when the
training examples follow a distribution similar
to that of future test examples.



* In our checkers Ilearning scenario, the
performance metric P is the percent of games the
system wins in the world tournament.

 |f its training experience E consists only of games
played against itself, there is an obvious danger
that this training experience might not be fully
representative of the distribution of situations
over which it will later be tested.



* For example, the learner might never
encounter certain crucial board states that are

very likely to be played by the human checkers
champion.



* |n practice, it is often necessary to learn from
a distribution of examples that is somewhat
different from those on which the final system
will be.

 Such situations are problematic because
mastery of one distribution of examples will
not necessary lead to strong performance
over some other distribution.



* A checkers learning problem:
— Task T: playing checkers

— Performance measure P: percent of games won in
the world tournament

— Training experience E: games played against itself



Checkers game

e Step 1: Position board Sit across from the other player,
with the board between you. Turn the board so that
you each have a red corner square on your right. Tip If
your board isn't black and red, just imagine that the
lighter color on your board is red, and the darker color
is black to follow these instructions.

e Step 2: Decide first player Decide who's going first. You
can flip a coin, base it on who won the last game, or
just agree. Whatever you choose, the starting player
gets the black checkers and the other player gets the
red.



 Step 3: Set up board Set up the board. Each
player arranges all twelve of his checkers on the
black squares (and only black squares!) of the
first three rows of his side of the board.

e Step 4: Make first move The first player (black)
begins by moving any one of his checkers in the
row closest to the middle of the board diagonally
one space. Checkers can only move diagonally,
which means the game is played entirely on the
black squares.



 Step 5: Next player moves The next player
moves one of his checkers diagonally one
space. At this stage of the game, you can only
move your pieces forward.
Step 6: Take turns Keep taking turns this way,
moving another checker or the same checker
further forward.



Step 7: Jump & capture On your turn, if your opponent's checker is
in front of you—that is, on a black square diagonal to yours—and
there's an empty square on the other side, you can jump your
checker over his, landing in the empty square. Take the other
player's checker that you just jumped over off the board and put it
to the side. Tip Remember: if your checker is jumpable on your
opponent's turn, he can jump and capture it, so before that
happens, try to move out of the way or fill in the empty square
behind you so there's no place for him to jump.

Step 8: Multiple capture You can jump over and capture more than
one checker in a turn. Just remember that there must be one empty
square between each one, so that you're leapfrogging one checker
at a time—not long-jumping over two.



e Step 9: "Crown me!" Continue to take turns
moving and jumping. If you manage to get a
checker all the way to the other side of the board,
tell your opponent, 'Crown me!' He'll have to take
one of the checkers of yours that he captured and
place it on top of your checker. Now you've got a
tall 'king' that can move both forward and
backward.

* Step 10: Take turns until win Continue to take
turns moving, jumping, and being crowned, until
one player captures all of the other's checkers.



What’s next >>>

* In order to complete the design of the
learning system, we must now choose

1. the exact type of knowledge to be learned
2. a representation for this target knowledge
3. a learning mechanism



1.2.2 Choosing the Target Function
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* Let us begin with a checkers-playing program that
can generate the legal moves from any board
state.

* The program needs only to learn how to choose
the best move from among these legal moves.

* This learning task is representative of a large class
of tasks for which the legal moves that define
some large search space are known a priori, but
for which the best search strategy is not known.



e GOAL s >>>

— Given this setting where we must learn to choose
among the legal moves, the most obvious choice
for the type of information to be learned is a
program, or function, that chooses the best move
for any given board state.

Tejaswini H, Assistant Professor,

41
Department of CSE



* Let us call this function ChooseMove
* Let us represent it as ChooseMove : B --> M

* i.e this function accepts as input any board
from the set of legal board states B and
produces as output some move from the set
of legal moves M.
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* Problem???

— Although ChooseMove is an obvious choice for
the target function in our example, this function
will turn out to be very difficult to learn given the
kind of indirect training experience available to
our system.



* An alternative target function !!

— an evaluation function that assigns a numerical
score to any given board state.
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Let us call this target function V
Let us use the notation V: B --> R

i.e. V. maps any legal board state from the set
B to some real value

(we use ‘R to denote the set of real numbers).



 We intend for this target function V to assign higher
scores to better board states.

* If the system can successfully learn such a target
function V, then it can easily use it to select the best
move from any current board position.

e This can be accomplished by generating the
successor board state produced by every legal move,
then using V to choose the best successor state and
therefore the best legal move.



e Let us define the target value V(b) for an
arbitrary board state b in B, as follows:

if b is a final board state that is won, then V(b) = 100

if b is a final board state that is lost, then V(b) = -100

if b is a final board state that is drawn, then V(b) =0

if b is a not a final state in the game, then V(b) = V(b’),
where b' is the best final board state that can be
achieved starting from b and playing optimally until the
end of the game

B W



 But this not efficiently computable by our
checkers playing program, we say that it is a
nonoperational definition.

* The goal >>

— to discover an operational description of V ; that
is, a description that can be used by the checkers-
playing program to evaluate states and select

moves within realistic time bounds.



* Thus, we have reduced the learning task in
this case to the problem of discovering an
operational description of the ideal target
function V.

* |t may be very difficult in general to learn such
an operational form of V perfectly.



* |n fact, we often expect learning algorithms to
acquire only some approximation to the
target function, and for this reason the
process of learning the target function is often
called function approximation.

* In the current discussion we will use the
symbol V to refer to the function that is
actually learned by our program, to
distinguish it from the ideal target function V.
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1.2.3 Choosing a Representation for
the Target Function

* Now that we have specified the ideal target
function V, we must choose a representation
that the learning program will use to describe
the function V that it will learn.

Tejaswini H, Assistant Professor,

1
Department of CSE >



Simple representation:

For any given board state, the function c will be
calculated as a linear combination of the
following board features:

— X,: the number of black pieces on the board

— X,: the number of red pieces on the board

— X3: the number of black kings on the board

— X,: the number of red kings on the board

— Xs:the number of black pieces threatened by red (i.e.,
which can be captured on red's next turn)

— Xe:the number of red pieces threatened by black



Thus, our learning program will represent ﬁ(b) 45 4 linear function of the
form '

l}(b) = Wy + WXy F WKy + W33 + Waxy + wWsxs + wWeks

* where w, through w, are numerical coefficients, or weights,
to be chosen by the learning algorithm.

* Learned values for the weights w; through w, will determine
the relative importance of the various board features in
determining the value of the board, whereas the weight w,
will provide an additive constant to the board value.
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Summary so far.......

Partial design of a checkers learning program:

o Task T playing checkers |
o Performance measure P: percent of games won in the world tournament

o Training experience E: games played against itself
o Target function: V:Board - R
o Target function representation

l?'(b) = wy + WiX] + Wrxy + Wixy + Waxg + Wsks + WeXg
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1.2.4 Choosing a Function
Approximation Algorithm

* In order to learn the target function V we
require a set of training examples, each
describing a specific board state b and the

training value V. . (b) for b.

* In other words, each training example is an
ordered pair of the form (b, V... (b)).
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* For instance, the following training example
describes a board state b in which black has
won the game (note x, = O indicates that red
has no remaining pieces) and for which the
target function value V... (b) is therefore
+100.



{{xy = 3..IEHO,I3 =1,x4=0,x5 =0, x5 =0}, +100)

Tejaswini H, Assistant Professor,
Department of CSE

57



* Below we describe a procedure that first
derives such training examples from the
indirect training experience available to the
learner, then adjusts the weights w; to best fit

these training examples



* 1.2.4.1 ESTIMATING TRAINING VALUES
* 1.2.4.2 ADJUSTING THE WEIGHTS



1.2.4.1 ESTIMATING TRAINING
VALUES

* the only training information available to our
learner is whether the game was eventually
won or lost.

 But...

— we require training examples that assign specific
scores to specific board states.

— the game was eventually won or lost does not
necessarily indicate that every board state along
the game path was necessarily good or bad.
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* Need to assigh specific scores to intermediate
board states

* Approximate intermediate board state b using
the learner's current approximation of the

next board state following b

Rule for estimating training values,
Viain(b) < V(Successor(b)) (1.1)



* we are using estimates of the value of the

Successor(b) to estimate the value of board
state V.

 More accurate for states closer to end states



1.2.4.2 ADJUSTING THE WEIGHTS

* What is remaining?!!!

— to specify the learning algorithm for choosing the
weights w; to best fit the set of training examples

{<b’ vtrain(b)> }
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Best fit?!!!!
— define the best hypothesis, or set of weights, as that which

minimizes the square error E between the training values
and the values predicted by the hypothesis V.

=
Il

> (Virain(b) = V(B))’

H’-r “mfn{b]}E fraining EI'EII‘I'I'FIES
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Best algorithm.........

e Several algorithms are known for finding weights of a
linear function that minimize E defined in this way.

e But

— we require an algorithm that will incrementally refine the
weights as new training examples become available and

that will be robust to errors in these estimated training
values.



* One such algorithm is called the least mean
squares, or LMS training rule.

* For each observed training example it adjusts
the weights a small amount in the direction
that reduces the error on this training
example.



LMS

LMS weight update rule.

For each training example (b, Viran (b))

o Use the current weights to calculate V()
o For each weight w,, update it as

W < w9 {Vrrﬂfn{b) - l:}(b:']' Xi
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1.2.5 The Final Design

* The final design of our checkers learning system can
be naturally described by four distinct program

modules that represent the central components in
many learning systems.
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Performance System

* The Performance System is the module that must solve the
given performance task, by using the learned target
function(s)

— in this case: playing checkers

* |t takes an instance of a new problem (new game) as input
and produces a trace of its solution (game history) as output.

* In our case, the strategy used by the Performance System to
select its next move at each step is determined by the learned
evaluation function V
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Critic

* The Critic takes as input the history or trace of the game and
produces as output a set of training examples of the target
function.

* As shown in the diagram, each training example in this case
corresponds to some game state in the trace, along with an
estimate V,,;, of the target function value for this example.

rain
* In our example, the Critic corresponds to the training rule
given by Equation (1.1).



Generalizer

* The Generalizer takes as input the training examples and

produces an output hypothesis that is its estimate of the
target function.

* It generalizes from the specific training examples,
hypothesizing a general function that covers these examples
and other cases beyond the training examples.

* In our example, the Generalizer corresponds to the LMS
algorithm, and the output hypothesis is the function V
described by the learned weightsw,, . . ., w,.



Experiment Generator

* The Experiment Generator takes as input the current
hypothesis (currently learned function) and outputs

a new problem for the Performance System to
explore.

* Its role is to pick new practice problems that will
maximize the learning rate of the overall system.

— In our example, the Experiment Generator follows a very

simple strategy: It always proposes the same initial game
board to begin a new game.
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Summary of choices in designhing the
checkers learning program.
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Issues in Machine Learning

 What algorithms exist for learning general target functions
from specific training examples? Which algorithms perform
best for which types of problems and representations?

* How much training data is sufficient? What general bounds
can be found to relate the confidence in learned hypotheses
to the amount of training experience and the character of the
learner's hypothesis space?
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When and how can prior knowledge held by the learner guide
the process of generalizing from examples? Can prior
knowledge be helpful even when it is only approximately
correct?

What is the best strategy for choosing a useful next training
experience, and how does the choice of this strategy alter the
complexity of the learning problem?



What is the best way to reduce the learning task to one or
more function approximation problems? Put another way,
what specific functions should the system attempt to learn?
Can this process itself be automated?

How can the learner automatically alter its representation to
improve its ability to represent and learn the target function?



Module 1: Chapter 2
Concept Learning
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* The problem of inducing general functions
from specific training examples is central to
learning.



* concept learning: acquiring the definition of a
general category given a sample of positive
and negative training examples of the
category.



* Concept learning can be formulated as a
problem of searching through a predefined
space of potential hypotheses for the

hypothesis that best fits the training
examples.



* Much of learning involves acquiring general
concepts from specific training examples.

* People, for example, continually learn general
concepts or categories such as "bird," "car,"
"situations in which | should study more in
order to pass the exam," etc.



e Each such concept can be viewed as
describing some subset of objects or events
defined over a larger set (e.g., the subset of
animals that constitute birds).

e Alternatively, each concept can be thought of
as a boolean-valued function defined over
this larger set (e.g., a function defined over all
animals, whose value is true for birds and false
for other animals).
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* we consider the problem of automatically
inferring the general definition of some
concept, given examples labeled as members
or nonmembers of the concept.

* This task is commonly referred to as concept
learning, or approximating a boolean-valued
function from examples.
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* Concept learning: Inferring a boolean-valued
function from training examples of its input
and output.



A CONCEPT LEARNING TASK

* concept learning:

— consider the example task of learning the target
concept "days on which my friend Aldo enjoys his
favorite water sport"
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Example  Sky  AirTemp Humidity Wind  Water  Forecast  EnjoySport
1 Sunny Warm  Normal Strong Warm -~ Same Yes
2 Sunny ~ Warm High  Strong Warm  Same Yes
3 Ramy  Cold High  Strong Warm Change @ No
4 Sunny  Warm High  Strong Cool  Change Yes
TABLE 2.1

Positive and negative training examples for the target concept EnjoySport.



 Table 2.1 describes a set of example days,
each represented by a set of attributes.

* The attribute EnjoySport indicates whether or
not Aldo enjoys his favorite water sport on
this day.

* The task is to learn to predict the value of
EnjoySport for an arbitrary day, based on the
values of its other attributes.



e What hypothesis representation shall we
provide to the learner in this case?

—Let wus begin by considering a simple
representation in which each hypothesis consists
of a conjunction of constraints on the instance
attributes.



* let each hypothesis be a vector of six
constraints, specifying the values of the six
attributes

— Sky

— AirTemp
— Humidity
— Wind

— Water

— Forecast.



* For each attribute, the hypothesis will either

— indicate by a "?' that any value is acceptable for
this attribute

— specify a single required value (e.g., Warm) for the
attribute, or

— indicate by a “"0" that no value is acceptable.



* |f some instance x satisfies all the constraints
of hypothesis h, then h classifies x as a
positive example (h(x) = 1).



* The most general hypothesis-that every day is
a positive example-is represented by

<?,?,7,727°27?>

Tejaswini H, Assistant Professor,

1
Department of CSE °



* the most specific possible hypothesis-that no
day is a positive example-is represented by

<00,0,0,0,0>

Tejaswini H, Assistant Professor,
Department of CSE

17



* To summarize, the EnjoySport concept
learning task requires learning the set of days
for which EnjoySport = yes, describing this set
by a conjunction of constraints over the
instance attributes.



* |[n general, any concept learning task can be
described by

— the set of instances over which the target function
is defined

— the target function

— the set of candidate hypotheses considered by the
learner

— the set of available training examples



The definition of the EnjoySport concept
learning task in this general form

e Given: -
e Instances X: Possible days, each described by the attributes
e Sky (with possible values Sunny, Cloudy, and Rainy),
® AirTemp (with values Warm and Cold),
o Humidity (with values Normal and High),
e Wind (with values Strong and Weak),
e Water (with values Warm and Cool ), and
e Forecast (with values Same and Change).
e Hypotheses H: Each hypothesis is described by a conjunction of constraints on the at-
tributes Sky, AirTemp, Humidity, Wind, Water, and Forecast. The constraints may be “?”
(any value is acceptable), “@” (no value is acceptable), or a specific value.’
e Target concept c: EnjoySport : X — {0, 1}
e Training examples D: Positive and negative examples of the target function (see Table 2.1).
e Determine: ‘
e A hypothesis 4 in H such that A(x) = c(x) for all x in X.

TABLE 2.2
The EnjoySport concept learning task.



Notation

° Instances X: The set of items over which the
concept is defined is called the set of
Instances.

— In the current example, X: is the set of all possible
days, each represented by the attributes Sky,
AirTemp, Humidity, Wind, Water, and Forecast.

Tejaswini H, Assistant Professor,
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* Target concept c: The concept or function to be
learned is called the target concept.

* |In general, c can be any boolean valued function
defined over the instances X; i.e. ¢ : X = {0, 1}.
—In the current example, the target concept

corresponds to the value of the attribute EnjoySport
— ¢(x) = 1 if EnjoySport = Yes, and
— ¢(x) = 0 if EnjoySport = No.



* training examples D: When learning the
target concept, the learner is presented a set
of training examples, each consisting of an
instance x from X, along with its target
concept value c(x)

 We will often write the ordered pair <x, c(x)>
to describe the training example consisting of
the instance x and its target concept value

c(x).



* |nstances for which ¢(x) = 1 are called positive
examples, or members of the target concept.

* |Instances for which ¢(x) = 0 are called
negative examples, or nonmembers of the

target concept.
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Hypothesis h: Given a set of training examples of
the target concept ¢, the problem faced by the
learner is to hypothesize, or estimate, c.

We use the symbol H to denote the set of all
possible  hypotheses that the learner may
consider regarding the identity of the target
concept.

In general, each hypothesis h in H represents a
boolean-valued function defined over X; i.e.
h:X - {0, 1}.

The goal of the learner is to find a hypothesis h
such that h(x) = ¢(x) for all x in X.



The Inductive Learning Hypothesis

* Although the learning task is to determine a
hypothesis h identical to the target concept ¢
over the entire set of instances X, the only

information available about c is its value over
the training examples.
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* Inductive learning algorithms can at best
guarantee that the output hypothesis fits the
target concept over the training data.

* Lacking any further information, our
assumption is that the best hypothesis
regarding unseen instances is the hypothesis
that best fits the observed training data.

 This is the fundamental assumption of
inductive learning.



The Inductive Learning Hypothesis

* Any hypothesis found to approximate the
target function well over a sufficiently large
set of training examples will also
approximate the target function well over
other unobserved examples.

Tejaswini H, Assistant Professor,
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CONCEPT LEARNING AS SEARCH

* Concept learning can be viewed as the task of
searching through a large space of hypotheses
implicitly defined by the hypothesis
representation.

— The goal of this search is to find the hypothesis
that best fits the training examples

Tejaswini H, Assistant Professor,
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* distinct instances
e syntactically distinct hypotheses within H
* semantically distinct hypotheses



* We are interested in algorithms capable of
efficiently searching very large or infinite
hypothesis spaces, to find the hypotheses
that best fit the training data.



General-to-Specific Ordering of
Hypotheses

* Many algorithms for concept learning organize the
search through the hypothesis space by relying on a
very useful structure that exists for any concept
learning problem: a general-to-specific ordering of
hypotheses.

e To design learning algorithms that exhaustively
search infinite hypothesis spaces without explicitly
enumerating every hypothesis.

Tejaswini H, Assistant Professor,
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* h, =<Sunny, ?, ?, Strong, ?, ?>
* h,=<Sunny, ?,7?,7?, 7, ?>



* First, for any instance x in X and hypothesis h
in H, we say that x satisfies h

—ifand only if h(x) =1



Definition: Let h; and h; be boolean-valued functions defined over X. Then h; 18
more.general than_or_equal_to , (written h; >, k) if and only If

e € X)(hlx) = 1) = (hytx) = D]



Instances X Hypotheses H

i
.‘\ ) ’ \ (. Specific
,f/ J
. >’ | (.»
#_foh \“‘)‘h
_ --'/j N /
i ((‘\ 2 (.\
’/ \ General
Y

(= <Sunny, Warm, High, Strong, Cool, Same> h1= <Sunny, ?, 2, Strong, ?, 7>
x2= <Sunny, Warm, High; Light, Warm, Same> h2= <Sunny, 2,2, 2,7, 7>

h 7 <Sunny, 2, ?, 7, Cool, 7>



* we will say that h; is (strictly) more-general
than h, (written h; > )

—ifand only if (h; 2, k) (h,'2, h)

* sometimes find the inverse useful and will say
that h; is more specific than h, when h, is
more-general-than h;



Definition 4 (More General Relation)

Let X be a feature space and let 4, and h, be two boolean-valued functions with
domain X. Then function h, is called more general than function h,, denoted as
hy 2>, hy, iff:

Vx € X : (hy(x)=1 implies h(x)=1)

hy is called stricly more general than hy, denoted as hy >, hy, iff:

(lll Zg hg) and (122 Z’g hl)

About the maximally specific / general hypothesis:

a s is minimum and g, is maximum with regard to >,: no hypothesis is more
specific wrt. s;, and no hypothesis is more general wrt. g;.

2 We will consider only hypothesis spaces that contain s, and g.
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Point to ponder ......

e How can we use the more-general-than partial
ordering to organize the search for a hypothesis
consistent with the observed training examples?

— One way is to begin with the most specific possible
hypothesis in H, then generalize this hypothesis each
time it fails to cover an observed positive training
example.

* We say that a hypothesis "covers" a positive
example if it correctly classifies the example as
positive.



Approaches to concept learning task:

e 1. FIND-S algorithm
e 2. Candidate-elimination algorithm

Tejaswini H, Assistant Professor,
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FIND-S: FINDING A MAXIMALLY
SPECIFIC HYPOTHESIS

1. Initialize  to the most specific hypothesis in H

2. For each positive training mstance x
o For each attribute constraint 4; In /
If the constraint 4; is satisfied by
~ Then do nothing |
Else replace a; in h by the next more general constraint that 15 satisfied by x

3. Qutput hypothests A

TABLE 2.3
FIND-S Algorithm.

Tejaswini H, Assistant Professor,
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Stepl: Find S

Example  Sky  AirTemp Humidity Wind Water Forecast EnjoySport

Sunny Warm  Normal Strong Warm  Same Yes
Sunny  Warm High  Strong Warm  Same Yes
Rainy Cold High Strong Warm  Change No
Sunny  Warm High Strong Cool  Change Yes

o L B e

1. Initialize h to the most specific hypothesis in H

h0 = <@, @, 9, 9, @, &>
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Step2 : Find S

2. For each positive training instance x
o For each attribute constraint a; in h
If the constraint a; is satisfied by x
Then do nothing
Else replace a; in h by the next more general constraint that is satisfied by x

h0 =<9,9,9,9,9,9>

WAEERN

x1 -<Sunny, Warm Normal, Strong, Warm, Same>

A

Iteration 1

Y

h1 = <Sunny, Warm, Normal, Strong, Warm, Same>

Tejaswini H, Assistant Professor,
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Step2 : Find S

h1= <Sunny, Warm Normal Strong, Warm Same>

NANNNN

Iteration 2
X2 = <Sunny, Warm ngh Strong, Warm Same>
h2 = <Sunny, Warm, ?, Strong, Warm Same>
Iteration 3 Ignore | | h3 = <Sunny, Warm, ?, Strong, Warm, Same>

Tejaswini H, Assistant Professor,
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Iteration 4 and Step 3 : Find S

h3 = <Sunny, Warm ? Strong, Warm Same>

AN \\\\\

x4 = <Sunny, Warm ngh Strong, CooI Change>

Iteration 4
Step 3 | / // ///
Output h4 = <Sunny Warm Strong, ,

Tejaswini H, Assistant Professor,
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Hypothesis Space Search by Find-S

Instances X Hypotheses H
® ® * i Specific
3 ® :
®
®
X &
*2
°
* General
o ® ner
® X 1 | J

ho = <,9,38,8, 3, >
x| = <Sunny Warm Normal Strong Warm Same>, + hy = <Sunny Warm Normal Strong Warm Same>
Xo= <Sunny Warm High Strong Warm Same>, + hy = <Sunny Warm ? Strong Warm Same>

Xg= <Rainy Cold High Strong Warm Change>>, - , h3 = <Sunny Warm ? Strong Warm Same>

X,= <Sunny Warm High Strong Cool Change>, + h4, = <Sunny Warm ? Strong ? ? >



Issues/Questions!!?!!

* Has the learner converged to the correct
target concept?

— Although FIND-S will find a hypothesis consistent
with the training data, it has no way to determine
whether it has found the only hypothesis in H
consistent with the data (i.e., the correct target
concept), or whether there are many other
consistent hypotheses as well.
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— We would prefer a learning algorithm that could
determine whether it had converged and, if not,
at least characterize its uncertainty regarding the
true identity of the target concept.



* Why prefer the most specific hypothesis? In
case there are multiple hypotheses consistent
with the training examples, FIND-S will find
the most specific.

— It is unclear whether we should prefer this

hypothesis over, say, the most general, or some
other hypothesis of intermediate generality.



* Are the training examples consistent? In most
practical learning problems there is some
chance that the training examples will contain
at least some errors or noise.

— Such inconsistent sets of training examples can

severely mislead FIND-S, given the fact that it
ignores negative examples.

— We would prefer an algorithm that could at least
detect when the training data is inconsistent and,
preferably, accommodate such errors.



* What if there are several maximally specific
consistent hypotheses?

— In the hypothesis language H for the EnjoySport
task, there is always a unique, most specific
hypothesis consistent with any set of positive
examples.

— However, for other hypothesis spaces there can be
several maximally specific hypotheses consistent
with the data.



VERSION SPACES AND
THE CANDIDATE-ELIMINATION
ALGORITHM

* Although FIND-S outputs a hypothesis from H, that is
consistent with the training examples, this is just one
of many hypotheses from H that might fit the
training data equally well.

* The key idea in the CANDIDATE-ELIMINATION
algorithm is to output a description of the set of all
hypotheses consistent with the training examples.
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* The CANDIDATE-ELIMINATION algorithm finds
all describable hypotheses that are consistent
with the observed training examples.



Basic definitions 1

Definition: A hypothesis 4 is consistent with a set of training examples D if and
only if 4(x) = ¢(x) for each example (x,c(x)) in D,

Consistent (, D) = (V{x, c(x)) € D) h(x) = c(x)

Tejaswini H, Assistant Professor,
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consistent v/s satisfies

* An example x is said to satisfy hypothesis h
when h(x) = 1, regardless of whether x is a
positive or negative example of the target
concept.

* However, whether such an example is
consistent with h depends on the target
concept, and in particular, whether h(x) = ¢(x).



e The CANDIDATE-ELIMINATION algorithm represents
the set of all hypotheses consistent with the
observed training examples.

* This subset of all hypotheses is called the version
space with respect to the hypothesis space H and the
training examples D, because it contains all plausible
versions of the target concept.



Basic Definition 2

Definition: The version space, denoted V Sy p, with respect to hypothesis space H
and training examples D, is the subset of hypotheses from H consistent with the
training examples 1n D.

VSup={h € H|Consistent(h, D))



Version Space:
LIST-THEN-ELIMINATION algorithm

* One obvious way to represent the version space is
simply to list all of its members.

* This leads to a simple learning algorithm, which we
might call the LIST-THEN-ELIMINATION algorithm

The LisT-THEN-ELIMINATE Algorithm
1. VersionSpace < a list containing every hypothesis in H
2. For each training example, (x, c(x))
remove from VersionSpace any hypothesis A for which A(x) # c(x)
3. Output the list of hypotheses in VersionSpace

TABLE 2.4
The LisT-THEN-ELIMINATE algorithm.



Basic definition 3, 4

Definition: The general boundary G, with respect to hypothesis space H and training
data D, is the set of maximally general members of H consistent with D.

G ={g € H|Consistent(g, D) A (-3¢ € H)[(¢' >, g) A Consistent(g, D))}

Deﬁnition The specific boundary §, with respect to hypothesis space H and training

data D, 15 the set of minimally general (Le., maximally specific) members of H
consistent with D,

= {5 € H|Consistent(s, D) A (<35 ¢ H){(s > 5') A Consistent (s, D)}}



Theorem 2.1 Version space representation theorem, Let X be an arbitrary set
of instances and let H be a set of boolean-valued hypotheses defined over X. Let
¢: X - {0,1} be an arbitrary target concept defined over X, and let D be an
arbitrary set of tramning examples {{x, c(x))}. For all X, H, c, and D such that § and
G are well defined,

VSpp=1heH|G@s € §)3g € G)g 2, h >, 5))



CANDIDATE-ELIMINATION
Algorithm



Initialize G to the set of maximally general hypotheses in H
Initialize S to the set of maximally specific hypotheses in H
For each training example d, do

o If d is a positive example
e Remove from G any hypothesis inconsistent with d .
o For each hypothesis s in S that is not consistent with 4 -
e Remove s from §
e Add to S all minimal generalizations h of 5 such that
& h is consistent with d, and some member of G is more general than #
e Remove from § any hypothesis that is more general than another hypothesis in §

e If d is a negative example
e Remove from S any hypothesis inconsistent with d
o For each hypothesis g in G that is not consistent with d
e Remove g from G
e Add to G all minimal specializations 4 of g such that
¢ h is consistent with d, and some member of § is more specific than A
¢ Remove from G any hypothesis that is less general than another hypothesis in G

TABLE 2.5

CANDIDATE-ELIMINATION algorithm using version spaces. Notice the duality in how positive and
negative examples influence S and G.



An lllustrative Example



50: @, o v o 0 >}

L J
S8 1 : | { <Sunny, Warm, Normal, Strong, Warm, Same> }

|

{<Sunny, Warm, ?, Strong, Warm, Same>}

GO’G].,GZ: {<?, ?, ?, ?,?, ?>}

Training examples:
1. <Sunny, Warm, Normal, Strong, Warm, Same>, Enjoy Sport = Yes
2. <Sunny, Warm, High, Strong, Warm, Same>, Enjoy Sport = Yes



S+, 8 3: | { <Sunny, Warm, ?, Strong, Warm, Same> }

G3: {<Sunny, 2, 2,2, 2, 72> <2, Warm, 2, 2, 2, 7> <2,2, 2,7, 2 Same>}

Gay: | {<2,2,22 2 72>}

Training Example:
3. <Rainy, Cold, High, Strong, Warm, Change>, EnjoySpoﬂ:Nd

FIGURE 2.5 |

CANDIDATE-ELIMINATION Trace 2. Training example 3 is a negative example that forces the G
boundary to be specialized to G3. Note several alternative maximally general hypotheses are included
in Giy.



S 3: |{<Sunny, Warm, ?, Strong, Warm, Same>}

l

S 4: { <Sunny, Warm, ?, Strong, ?, 7>}

G4 |(<Sunny, 2,2, 2,2, 7> <2, Warm, 2, 2, ?, 7>}

T

G3: {<Sunny, ?,?, 2,2, 72> <2, Warm, 2, 2,2, 7> <?,2,2, 7, 2, Same>}

Training Example:

4.<Sunny, Warm, High, Strong, Cool, Change>, EnjoySport = Yes

FIGURE 2.6 | |
CANDIDATE-ELIMINATION Trace 3. The positive training example generalizes the S boundary, from
S3 to S4. One member of G3 must also be deleted, because it is no longer more general than the Sy
boundary. |



S 4:\{<Sunny, Warm, ?, Strong, ?, 7>}

)

<Sunny, 2, 7, Strong, ?, 7> <Sunny, Warm, ?, 7, 2, 2> <2, Warm, ?, Strong, ?, 7>

NSNS

The ﬁnal version space for the EnjoySport concept learning problem and training examples descnbed
earlier.




Example 2

Origin | Manufacturer | Color | Decade Type ' 'l\“’arget
alue
Japan Honda Blue 1980 Economy Positive
Japan Toyota Green 1970 Sports Negative
Japan Toyota Blue 1990 Economy Positive
USA Chryler Red 1980 Economy Negative
Japan Honda | White 1980 Economy Positive
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Gy={<? 2?2 2 2?2 ?>}

S5=1<d, ¢, &, P, >}



X, : <Japan, Honda, Blue, 1980, Economy>, Positive
Positive Example

G,={<? 2, 2 ? 2?>)

4 ) )

S, ={<Japan, Honda, Blue, 1980, Economy > }



X, : <Japan, Toyota, Green, 1970, Sports>, Negative
Negative Example

G,={ <?, Honda, ?, ?, ? >
<?, ?, Blue, ?, ? >
<?, 7?, ?, 1980, ? >,

<?, 7, ?, ?, Economy >}

S,={<Japan, Honda, Blue, 1980, Economy >}



X5 : <Japan, Toyota, Blue, 1990, Economy>, Positive
Positive Example

G;={ <?, 7, Blue, ?, ?>,
<?, 7?7, 7, ?, Economy >}

S;={ <Japan, ?, Blue, ?, Economy >}



X, : <USA, Chryler, Red, 1980, Economy>, Negative
G,=1{ <?, ?, Blue, ?, ? >

<Japan, ?, 7, ?, Economy >}
S, =1{ <Japan, ?, Blue, ?, Economy >}



X; : <Japan, Honda, White, 1980, Economy> , Positive
Gs={ <Japan, ?, ?, ?, Economy >}
Sc={ <lJapan, ?, ?, ?, Economy >}



Example 3:

SMALL BLUE CIRCLE POSITIVE
BIG RED CIRCLE NEGATIVE
SMALL RED TRIANGLE NEGATIVE
SMALL RED CIRCLE POSITIVE

BIG BLUE CIRCLE NEGATIVE

Tejaswini H, Assistant Professor,
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Gy={<? 2?2 2 2?2 ?>}

S5=1<d, ¢, &, P, >}



X, : <small, blue, circle>, Positive
Positive Example

G, ={<?, 7, ? >}
S, = {<small, blue, circle>}



X, : <big, red, circle>, Negative
Negative Example

G,={ <small, ? >
, blue, 7>}

S,={ <small, blue, circle>}

<?



X5 : <small, red, triangle>, Negative
Negative Example

G, = { <small, ?, circle>,
<?, blue, 7>}

S;={ <small, blue, circle>}



X, : <small, red, circle>, Positive
Positive Example

G,={ <small, ?, circle> }

S, =1{ <small, ?, circle> }



X; : <big, blue, circle>, Negative
Negative Example

G.= {<small, ?, circle>}
Sc= { <small, ?, circle>}



2.7 INDUCTIVE BIAS
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* CANDIDATE-ELIMINATION algorithm  will
converge toward the true target concept
provided it is given accurate training
examples and provided its initial hypothesis
space contains the target concept.



* What if the target concept is not contained in
the hypothesis space?

— Can we avoid this difficulty by using a hypothesis
space that includes every possible hypothesis?



* How does the size of this hypothesis space
influence the ability of the algorithm to
generalize to unobserved instances?

* How does the size of the hypothesis space
influence the number of training examples
that must be observed?

* These are fundamental questions for
inductive inference in general.



* A Biased Hypothesis Space
* An Unbiased Learner
* The Futility of Bias-Free Learning



A Biased Hypothesis Space
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Example  Sky  AirTemp Humidity ~Wind Water Forecast EnjoySport

1 Sunny Warm  Normal Strong Cool  Change Yes
2 Cloudy Warm  Normal Strong Cool  Change Yes
3 Rainy  Warm  Normal Strong Cool  Change No




* There are no hypotheses consistent with these
three examples,

— note that the most specific hypothesis consistent
with the first two examples and representable in
the given hypothesis space H is

S2 : <?, Warm, Normal, Strong, Cool, Change>
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* This hypothesis, although it is the maximally
specific hypothesis from H that is consistent
with the first two examples, is already overly
general:

— it incorrectly covers the third (negative) training
example.



* The problem is that we have biased the
learner to consider only conjunctive

hypotheses.

— we restricted the hypothesis space to include only
conjunctions of attribute values.

* Because of this restriction, the hypothesis
space is unable to represent even simple
disjunctive target concepts such as "Sky =

Sunny or Sky = Cloudy."



* In fact, given the following three training
examples of this disjunctive hypothesis, our
algorithm would find that there are zero

nypotheses in the version space.

* [n this case we require a more expressive
nypothesis space.




An Unbiased Learner
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* The obvious solution to the problem of
assuring that the target concept is in the
hypothesis space H is:

—to provide a hypothesis space capable of
representing every teachable concept;

—that is, it is capable of representing every
possible subset of the instances X.

Tejaswini H, Assistant Professor,
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* |[n general, the set of all subsets of a set X is
called the powerset of X.

Tejaswini H, Assistant Professor,
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* |n the EnjoySport learning task,
— Number of attributes : 6

— the size of the instance space X of days described
by the six available attributes is |X]|: 3*2%*2%2%2*2
= 96.



* |n general, the number of distinct subsets that
can be defined over a set X containing |X|
elements (i.e., the size of the power set of X)

is 21Xl

* Thus, there are 21°®l distinct target concepts
that could be defined over this instance space
and that our learner might be called upon to

learn.



Let us reformulate....

* Let us reformulate the Enjoysport learning
task in an unbiased way by defining

— a new hypothesis space H' that can represent
every subset of instances;

— that is, let H' correspond to the power set of X.



* One way to define such an H' is to allow
arbitrary  disjunctions, conjunctions, and
negations of our earlier hypotheses.

* For instance, the target concept "Sky = Sunny
or Sky = Cloudy" could then be described as

(Sunny, ?, ?, 2, 2, ?)v (Cloudy, ?, ?, ?, 2, ?)



* Given this hypothesis space, we can safely use
the  CANDIDATE-ELIMINATION  algorithm
without worrying that the target concept
might not be expressible.

* However, it unfortunately raises a new, equally
difficult problem:
— our concept learning algorithm is now completely

unable to generalize beyond the observed
examples



* Suppose we present three positive examples
(x1, x2, x3) and two negative examples (x4,
x5) to the learner.

* At this point, the § boundary of the version
space will contain the hypothesis which is just
the disjunction of the positive examples

5 {(x1 vV x2 Vv x3)}



e Similarly, the G boundary will consist of the
hypothesis that rules out only the observed
negative examples

G {—(xqV x5)]



 Therefore, the only examples that will be
unambiguously classified by § and G are the
observed training examples themselves.

* In order to converge to a single, final target
concept, we will have to present every single
instance in X as a training example



 Unfortunately, the only instances that will
produce a unanimous vote are the previously

observed training examples.

* For, all the other instances, taking a vote will

be futile: each unobserved instance will

classified positive by precisely half t
hypotheses in the version space and will

classified negative by the other half.

DE
NE

0[S



The Futility of Bias-Free Learning
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 fundamental property of inductive inference:

— a learner that makes no a priori assumptions
regarding the identity of the target concept has
no rational basis for classifying any unseen
instances.



* In fact, the only reason that the CANDIDATE-
ELIMINATION was able to generalize beyond the
observed training examples in our original
formulation of the EnjoySport task is that it was
biased by the implicit assumption that the target
concept could be represented by a conjunction of
attribute values.



* |n cases where this assumption is correct (and
the training examples are error-free), its
classification of new instances will also be
correct.

e |f this assumption is incorrect, however, it is
certain that the CANDIDATE-ELIMINATION will
misclassify at least some instances from X.



 Because inductive learning requires some
form of prior assumptions, or inductive bias,
we will find it useful to characterize different
learning approaches by the inductive bias they

employ



Need of generalizing beyond observed data...

* consider the general setting in which an
arbitrary learning algorithm L is provided an
arbitrary set of training data D, = {(x, c(x))} of
some arbitrary target concept c.



e After training, L is asked to classify a new
Instance x.

* Let L(x, D.) denote the classification (e.g.,
positive or negative) that L assigns to x; after
earning from the training data D._.

 We can describe this inductive inference step
performed by L as follows:

(De Ax;) > L(x;, D)



e For example, if we take L to be the
CANDIDATE-ELIMINATION, D, to be the
training data from Table 2.1, and x; to be the
fist instance from Table 2.6, then the
inductive inference performed in this case
concludes that L(x,, D.) = (EnjoySport = yes).




* it is interesting to ask what additional
assumptions could be added to D_ " x; so that
L(x;, D) would follow deductively.

 We define the inductive bias of L as this set of
additional assumptions.



* More precisely, we define the inductive bias of
L to be the set of assumptions B such that for
all new instances x;

(BAD.Ax;) F L(x;, D)

 Thus, we define the inductive bias of a learner
as the set of additional assumptions B
sufficient to justify its inductive inferences as
deductive inferences.



Definition: Consider a concept learning algorithm L for the set of instances X, Let
¢ be an arbitrary concept defined over X, and let D, = {(x,c(x)}} be an arbitrary
-~ set of training examples of ¢. Let L(x;, D,) denote the classification assigned to
the instance x; by L after training on the data D,. The inductive bias of L is any
minimal set of assertions B such that for any target concept ¢ and corresponding
training examples D,

(Yx; € X)[(BA D Ax;) - L(x;, D,)] (2.1)
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* Inductive bias of CANDIDATE-ELIMINATION
Algorithm: The target concept c is contained
in the given hypothesis space H.



Inductive system

Classification of
.- Candidate new instance, or
Training examples - Elimination "don’t know"
Algorithm -
New instance | Using Hypothesis
Space H

Equivalent deductive system

Classification of

Training ex les _ new instance, or
g Amp "don’t know"

] Theorem Prover
New instance

Assertion " H contains
the target concept”

/

Inductive bias
made explicit

FIGURE 2.8
Modeling inductive systeinis "by“equivalent deductive systems.



* One advantage of viewing inductive inference
systems in terms of their inductive bias is that
it provides a nonprocedural means of
characterizing their policy for generalizing
beyond the observed data.

* A second advantage is that it allows
comparison of different learners according to
the strength of the inductive bias they employ.



ROTE-LEARNER: Learning corresponds simply to storing each
observed training example in memory. Subsequent instances
are classified by looking them up in memory. If the instance
is found in memory, the stored classification is returned.
Otherwise, the system refuses to classify the new instance.

CANDIDATE-ELIMINATION algorithm: New instances are
classified only in the case where all members of the current
version space agree on the classification. Otherwise, the
system refuses to classify the new instance.

FIND-S: This algorithm, described earlier, finds the most
specific hypothesis consistent with the training examples. It
then uses this hypothesis to classify all subsequent
instances.
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