
Module 1 
Introduction to Machine Learning 

Tejaswini H, Assistant Professor, 
Department of CSE 

1 



What is Machine Learning? 

 

• Machine learning is an application of artificial 
intelligence (AI) that provides systems the 
ability to automatically learn and improve 
from experience without being explicitly 
programmed.  

• Machine learning focuses on the 
development of computer programs that can 
access data and use it learn for themselves. 
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• The process of learning begins with observations 
or data, such as examples, direct experience, or 
instruction, in order to look for patterns in data 
and make better decisions in the future based on 
the examples that we provide.  

• The primary aim is to allow the computers learn 
automatically without human intervention or 
assistance and adjust actions accordingly. 
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• https://www.artificial-
intelligence.blog/news/how-companies-use-
machine-learning 
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Some successful applications of 
machine learning 

• Learning to recognize spoken words 

• Learning to drive an autonomous vehicle 

• Learning to classify new astronomical 
structures 

• Learning to play world-class backgammon. 
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* Learning to recognize spoken words 

• For example, the SPHINX system (e.g., Lee 1989) 
learns speaker-specific strategies for recognizing 
the primitive sounds and words from the 
observed speech signal.  

• Neural network learning methods (e.g., Waibel et 
al. 1989) and methods for learning hidden 
Markov models (e.g., Lee 1989) are effective for 
automatically customizing to individual speakers, 
vocabularies, microphone characteristics, 
background noise, etc.  
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* Learning to drive an autonomous 
vehicle 

• Machine learning methods have been used to 
train computer-controlled vehicles to steer 
correctly when driving on a variety of road types.  

• For example, the ALVINN system (Pomerleau 
1989) has used its learned strategies to drive 
unassisted at 70 miles per hour for 90 miles on 
public highways among other cars.  

• Similar techniques have possible applications in  
many sensor-based control problems. 
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* Learning to classify new 
astronomical structures 

• Machine learning methods have been applied to 
a variety of large databases to learn general 
regularities implicit in the data.  

• For example, decision tree learning algorithms 
have been used by NASA to learn how to classify 
celestial objects from the second Palomar 
Observatory Sky Survey (Fayyad et al. 1995).  

• This system is now used to automatically classify 
all objects in the Sky Survey, which consists of 
three terrabytes of image data. 
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* Learning to play world-class 
backgammon. 

• The most successful computer programs for playing 
games such as backgammon are based on machine 
learning algorithms.  

• For example, the world's top computer program for 
backgammon, TD-GAMMON(Tesauro 1992, 1995) 
learned its strategy by playing over one million practice 
games against itself.  

• It now plays at a level competitive with the human 
world champion.  

• Similar techniques have applications in many practical 
problems where very large search spaces must be 
examined efficiently. 
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Outline 

1.1 WELL-POSED LEARNING PROBLEMS 

1.2 DESIGNING A LEARNING SYSTEM 

1.3 PERSPECTIVES AND ISSUES IN MACHINE 
LEARNING 
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1.1 WELL-POSED LEARNING 
PROBLEMS 

• Definition: A computer program is said to 
learn from experience E with respect to some 
class of tasks T and performance measure P, 
if its performance at tasks in T, as measured 
by P, improves with experience E. 
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• In general, to have a well-defined learning 
problem, we must identity these three 
features:  

– the class of tasks (T) 

– the measure of performance to be improved (P) 

– and the source of experience (E) 
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A checkers learning problem: 

• Task T: playing checkers 

• Performance measure P: 
percent of games won 
against opponents 

• Training experience E: 
playing practice games 
against itself 
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A handwriting recognition learning 
problem: 

• Task T: recognizing and 
classifying handwritten 
words within images 

• Performance measure P: 
percent of words 
correctly classified 

• Training experience E: a 
database of handwritten 
words with given 
classifications 
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A robot driving learning problem: 

• Task T: driving on public four-
lane highways using vision 
sensors 

• Performance measure P: 
average distance traveled 
before an error (as judged by 
human overseer) 

• Training experience E: a 
sequence of images and 
steering commands recorded 
while observing a human 
driver 
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1.2 DESIGNING A LEARNING SYSTEM 

Consider: 

• designing a program to learn to play 
checkers, with the goal of entering it in the 
world checkers tournament.  

• We adopt the obvious performance measure: 
the percent of games it wins in this world 
tournament. 
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• 1.2.1 Choosing the Training Experience 

• 1.2.2 Choosing the Target Function 

• 1.2.3 Choosing a Representation for the 
Target Function 

• 1.2.4 Choosing a Function Approximation 
Algorithm 

• 1.2.5 The Final Design 
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1.2.1 Choosing the Training 
Experience 

• The first design choice we face is to choose 
the type of training experience from which 
our system will learn.  

• The type of training experience available can 
have a significant impact on success or failure 
of the learner.  
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Training experience   
Key Attribute-1 

• Whether the training experience provides 
direct or indirect feedback regarding the 
choices made by the performance system. 
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• For example, in learning to play checkers: 

– the system might learn from direct training examples 
consisting of individual checkers board states and the 
correct move for each.  

– Alternatively, it might have available only indirect 
information consisting of the move sequences and 
final outcomes of various games played.  
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• In this later case, information about the correctness 
of specific moves early in the game must be inferred 
indirectly from the fact that the game was eventually 
won or lost.  

• Here the learner faces an additional problem of 
credit assignment, or determining the degree to 
which each move in the sequence deserves credit or 
blame for the final outcome.  
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• Credit assignment can be a particularly 
difficult problem because the game can be 
lost even when early moves are optimal, if 
these are followed later by poor moves.  

• Hence, learning from direct training feedback 
is typically easier than learning from indirect 
feedback. 
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Training experience   
Key Attribute-2 

• The degree to which the learner controls the 
sequence of training examples. 
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The learner might rely on the teacher to select 
informative board states and to provide the correct 
move for each.  

The learner might itself propose board states that it 
finds particularly confusing and ask the teacher for the 
correct move.  

The learner may have complete control over both the 
board states and (indirect) training classifications, as it 
does when it learns by playing against itself with no 
teacher present. 
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Training experience   
Key Attribute-3 

• How well it represents the distribution of 
examples over which the final system  
performance P must be measured. 
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• In general, learning is most reliable when the 
training examples follow a distribution similar 
to that of future test examples. 
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• In our checkers learning scenario, the 
performance metric P is the percent of games the 
system wins in the world tournament.  

• If its training experience E consists only of games 
played against itself, there is an obvious danger 
that this training experience might not be fully 
representative of the distribution of situations 
over which it will later be tested.  
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• For example, the learner might never 
encounter certain crucial board states that are 
very likely to be played by the human checkers 
champion.  
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• In practice, it is often necessary to learn from 
a distribution of examples that is somewhat 
different from those on which the final system 
will be.  

• Such situations are problematic because 
mastery of one distribution of examples will 
not necessary lead to strong performance 
over some other distribution. 
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• A checkers learning problem: 

– Task T: playing checkers 

– Performance measure P: percent of games won in 
the world tournament 

– Training experience E: games played against itself 
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Checkers game 

• Step 1: Position board Sit across from the other player, 
with the board between you. Turn the board so that 
you each have a red corner square on your right. Tip If 
your board isn't black and red, just imagine that the 
lighter color on your board is red, and the darker color 
is black to follow these instructions.  

• Step 2: Decide first player Decide who's going first. You 
can flip a coin, base it on who won the last game, or 
just agree. Whatever you choose, the starting player 
gets the black checkers and the other player gets the 
red.  
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• Step 3: Set up board Set up the board. Each 
player arranges all twelve of his checkers on the 
black squares (and only black squares!) of the 
first three rows of his side of the board. 

• Step 4: Make first move The first player (black) 
begins by moving any one of his checkers in the 
row closest to the middle of the board diagonally 
one space. Checkers can only move diagonally, 
which means the game is played entirely on the 
black squares. 
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• Step 5: Next player moves The next player 
moves one of his checkers diagonally one 
space. At this stage of the game, you can only 
move your pieces forward.  
Step 6: Take turns Keep taking turns this way, 
moving another checker or the same checker 
further forward.  
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• Step 7: Jump & capture On your turn, if your opponent's checker is 
in front of you—that is, on a black square diagonal to yours—and 
there's an empty square on the other side, you can jump your 
checker over his, landing in the empty square. Take the other 
player's checker that you just jumped over off the board and put it 
to the side. Tip Remember: if your checker is jumpable on your 
opponent's turn, he can jump and capture it, so before that 
happens, try to move out of the way or fill in the empty square 
behind you so there's no place for him to jump.  

• Step 8: Multiple capture You can jump over and capture more than 
one checker in a turn. Just remember that there must be one empty 
square between each one, so that you're leapfrogging one checker 
at a time—not long-jumping over two.  
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• Step 9: "Crown me!" Continue to take turns 
moving and jumping. If you manage to get a 
checker all the way to the other side of the board, 
tell your opponent, 'Crown me!' He'll have to take 
one of the checkers of yours that he captured and 
place it on top of your checker. Now you've got a 
tall 'king' that can move both forward and 
backward.  

• Step 10: Take turns until win Continue to take 
turns moving, jumping, and being crowned, until 
one player captures all of the other's checkers. 
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What’s  next >>> 

• In order to complete the design of the 
learning system, we must now choose 

1. the exact type of knowledge to be learned 

2. a representation for this target knowledge 

3. a learning mechanism 
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1.2.2 Choosing the Target Function 
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• Let us begin with a checkers-playing program that 
can generate the legal moves from any board 
state.  

• The program needs only to learn how to choose 
the best move from among these legal moves. 

• This learning task is representative of a large class 
of tasks for which the legal moves that define 
some large search space are known a priori, but 
for which the best search strategy is not known. 
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• GOAL is >>> 

– Given this setting where we must learn to choose 
among the legal moves, the most obvious choice 
for the type of information to be learned is a 
program, or function, that chooses the best move 
for any given board state. 
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• Let us call this function ChooseMove  

• Let us represent it as ChooseMove : B --> M  

• i.e  this function accepts as input any board 
from the set of legal board states B and 
produces as output some move from the set 
of legal moves M. 
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• Problem??? 

– Although ChooseMove is an obvious choice for 
the target function in our example, this function 
will turn out to be very difficult to learn given the 
kind of indirect training experience available to 
our system. 
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• An alternative target function !! 

– an evaluation function that assigns a numerical 
score to any given board state. 
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• Let us call this target function V  

• Let us use the notation V : B --> ℜ  

• i.e. V maps any legal board state from the set 
B to some real value  

• (we use ℜ to denote the set of real numbers). 
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• We intend for this target function V to assign higher 
scores to better board states.  

• If the system can successfully learn such a target 
function V, then it can easily use it to select the best 
move from any current board position. 

• This can be accomplished by generating the 
successor board state produced by every legal move, 
then using V to choose the best successor state and 
therefore the best legal move. 

Tejaswini H, Assistant Professor, 
Department of CSE 

46 



• Let us define the target value V(b) for an 
arbitrary board state b in B, as follows: 

1. if b is a final board state that is won, then V(b) = 100 

2. if b is a final board state that is lost, then V(b) = -100 

3. if b is a final board state that is drawn, then V(b) = 0 

4. if b is a not a final state in the game, then V(b) = V(b’), 
where b' is the best final board state that can be 
achieved starting from b and playing optimally until the 
end of the game 
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• But this not efficiently computable by our 
checkers playing program, we say that it is a 
nonoperational definition. 

• The goal >> 

– to discover an operational description of V ; that 
is, a description that can be used by the checkers-
playing program to evaluate states and select 
moves within realistic time bounds. 
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• Thus, we have reduced the learning task in 
this case to the problem of discovering an 
operational description of the ideal target 
function V.  

• It may be very difficult in general to learn such 
an operational form of V perfectly.  
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• In fact, we often expect learning algorithms to 
acquire only some approximation to the 
target function, and for this reason the 
process of learning the target function is often 
called function approximation.  

• In the current discussion we will use the 
symbol V̂ to refer to the function that is 
actually learned by our program, to 
distinguish it from the ideal target function V. 

 
Tejaswini H, Assistant Professor, 

Department of CSE 
50 



1.2.3 Choosing a Representation for 
the Target Function 

• Now that we have specified the ideal target 
function V, we must choose a representation 
that the learning program will use to describe 
the function V̂ that it will learn. 
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Simple representation: 

• For any given board state, the function c will be 
calculated as a linear combination of the 
following board features: 
– x1: the number of black pieces on the board 

– x2: the number of red pieces on the board 

– x3: the number of black kings on the board 

– x4: the number of red kings on the board 

– x5: the number of black pieces threatened by red (i.e., 
which can be captured on red's next turn) 

– X6: the number of red pieces threatened by black 
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• where w0 through w6 are numerical coefficients, or weights, 
to be chosen by the learning algorithm.  

• Learned values for the weights w1 through w6 will determine 
the relative importance of the various board features in 
determining the value of the board, whereas the weight wo 
will provide an additive constant to the board value. 

Tejaswini H, Assistant Professor, 
Department of CSE 

53 



Summary so far……. 
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1.2.4 Choosing a Function 
Approximation Algorithm 

 • In order to learn the target function V̂ we 
require a set of training examples, each 
describing a specific board state b and the 
training value Vtrain(b) for b.  

• In other words, each training example is an 
ordered pair of the form (b, Vtrain(b)).  
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• For  instance, the following training example 
describes a board state b in which black has 
won the game (note x2 = 0 indicates that red 
has no remaining pieces) and for which the 
target function value Vtrain(b) is therefore 
+100. 
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• Below we describe a procedure that first 
derives such training examples from the 
indirect training experience available to the 
learner, then adjusts the weights wi to best fit 
these training examples 
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• 1.2.4.1 ESTIMATING TRAINING VALUES 

• 1.2.4.2 ADJUSTING THE WEIGHTS 
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1.2.4.1 ESTIMATING TRAINING 
VALUES 

• the only training information available to our 
learner is whether the game was eventually 
won or lost.  

• But… 

– we require training examples that assign  specific 
scores to specific board states.  

– the game was eventually won or lost does not 
necessarily indicate that every board state along 
the game path was necessarily good or bad. 
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• Need to assign specific scores to intermediate 
board states 

• Approximate intermediate board state b using 
the learner's current approximation of the 
next board state following b 
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• we are using estimates of the value of the 
Successor(b) to estimate the value of board 
state V̂ . 

• More accurate for states closer to end states 
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1.2.4.2 ADJUSTING THE WEIGHTS 

• What is remaining?!!! 

– to specify the learning algorithm for choosing the 
weights wi to  best fit the set of training examples 
{<b, V train(b)>} 
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• Best fit?!!!! 

– define the best hypothesis, or set of weights, as that which 

minimizes the square error E between the training values 

and the values predicted by the hypothesis V̂ . 
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Best algorithm……… 

• Several algorithms are known for finding weights of a 
linear function that minimize E defined in this way.  

• But 

– we require an algorithm that will incrementally refine the 
weights as new training examples become available and 
that will be robust to errors in these estimated training 
values.  
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• One such algorithm is called the least mean 
squares, or LMS training rule.  

• For each observed training example it adjusts 
the weights a small amount in the direction 
that reduces the error on this training 
example. 
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LMS 
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1.2.5 The Final Design 

• The final design of our checkers learning system can 
be naturally described by four distinct program 
modules that represent the central components in 
many learning systems. 

Tejaswini H, Assistant Professor, 
Department of CSE 

68 



 

Tejaswini H, Assistant Professor, 
Department of CSE 

69 



Performance System 

• The Performance System is the module that must solve the 
given performance task, by using the learned target 
function(s) 
– in this case: playing checkers  

• It takes an instance of a new problem (new game) as input 
and produces a trace of its solution (game history) as  output.  

• In our case, the strategy used by the Performance System to 
select its next move at each step is determined by the learned 
evaluation function V̂ 
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Critic 

• The Critic takes as input the history or trace of the game and 
produces as output a set of training examples of the target 
function.  

• As shown in the diagram, each training example in this case 
corresponds to some game state in the trace, along with an 
estimate Vtrain of the target function value for this example.  

• In our example, the Critic corresponds to the training rule 
given by Equation (1.1). 
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Generalizer 

• The Generalizer takes as input the training examples and 
produces an output hypothesis that is its estimate of the 
target function.  

• It generalizes from the specific training examples, 
hypothesizing a general function that covers these examples 
and other cases beyond the training examples.  

• In our example, the Generalizer corresponds to the LMS 
algorithm, and the output hypothesis is the function V̂ 
described by the learned weights wo, . . . , w6. 
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Experiment Generator 

• The Experiment Generator takes as input the current 
hypothesis (currently learned function) and outputs 
a new problem for the Performance System to 
explore.  

• Its role is to pick new practice problems that will 
maximize the learning rate of the overall system.  

– In our example, the Experiment Generator follows a very 
simple strategy: It always proposes the same initial game 
board to begin a new game.  
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Summary of choices in designing the 
checkers learning program. 
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Issues in Machine Learning 

• What algorithms exist for learning general target functions 
from specific  training examples? Which algorithms perform 
best for which types of problems and representations? 

• How much training data is sufficient? What general bounds 
can be found to relate the confidence in learned hypotheses 
to the amount of training experience and the character of the 
learner's hypothesis space? 
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• When and how can prior knowledge held by the learner guide 
the process of generalizing from examples? Can prior 
knowledge be helpful even when it is only approximately 
correct? 

• What is the best strategy for choosing a useful next training 
experience, and how does the choice of this strategy alter the 
complexity of the learning problem? 
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• What is the best way to reduce the learning task to one or 
more function approximation problems? Put another way, 
what specific functions should the system attempt to learn? 
Can this process itself be automated? 

• How can the learner automatically alter its representation to 
improve its ability to represent and learn the target function? 
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Module 1: Chapter 2 
Concept Learning 
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• The problem of inducing general functions 
from specific training examples is central to 
learning.  
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• concept learning: acquiring the definition of a 
general category given a sample of positive 
and negative training examples of the 
category. 
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• Concept learning can be formulated as a 
problem of searching through a predefined 
space of potential hypotheses for the  
hypothesis that best fits the training 
examples. 
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• Much of learning involves acquiring general 
concepts from specific training examples. 

• People, for example, continually learn general 
concepts or  categories such as "bird," "car," 
"situations in which I should study more in 
order to pass the exam," etc.  
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• Each such concept can be viewed as 
describing some subset of objects or events 
defined over a larger set (e.g., the subset of 
animals that constitute birds).  

• Alternatively, each concept can be thought of 
as a boolean-valued function defined over 
this larger set (e.g., a function defined over all 
animals, whose value is true for birds and false 
for other animals). 
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• we consider the problem of automatically 
inferring the general definition of some 
concept, given examples labeled as members 
or nonmembers of the concept.  

• This task is commonly referred to as concept 
learning, or approximating a boolean-valued 
function from examples. 
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• Concept learning: Inferring a boolean-valued 
function from training examples of its input 
and output. 
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A CONCEPT LEARNING TASK 

• concept learning:  

– consider the example task of learning the target 
concept "days on which my friend Aldo enjoys his 
favorite water sport" 
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• Table 2.1 describes a set of example days, 
each represented by a set of attributes.  

• The attribute EnjoySport indicates whether or 
not Aldo enjoys his favorite water sport on 
this day.  

• The task is to learn to predict the value of 
EnjoySport for an arbitrary day, based on the 
values of its other attributes. 
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• What hypothesis representation shall we 
provide to the learner in this case? 

– Let us begin by considering a simple 
representation in which each hypothesis consists 
of a conjunction of constraints on the instance 
attributes. 
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• let each hypothesis be a vector of six 
constraints, specifying the values of the six 
attributes  
– Sky 

– AirTemp 

– Humidity 

– Wind 

– Water 

– Forecast. 
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• For each attribute, the hypothesis will either  

– indicate by a "?' that any value is acceptable for 
this attribute 

– specify a single required value (e.g., Warm) for the 
attribute, or 

– indicate by a "0" that no value is acceptable. 
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• If some instance x satisfies all the constraints 
of hypothesis h, then h classifies x as a 
positive example (h(x) = 1). 

Tejaswini H, Assistant Professor, 
Department of CSE 

15 



• The most general hypothesis-that every day is 
a positive example-is represented by 

 < ?, ?, ?, ?, ?, ? > 
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• the most specific possible hypothesis-that no 
day is a positive example-is represented by 

 < 0, 0, 0, 0, 0, 0 > 
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• To summarize, the EnjoySport concept 
learning task requires learning the set of days 
for which EnjoySport = yes, describing this set 
by a conjunction of constraints over the 
instance attributes. 
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• In general, any concept learning task can be 
described by 

– the set of instances over which the target function 
is defined 

– the target function 

– the set of candidate hypotheses considered by the 
learner 

– the set of available training examples 
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The definition of the EnjoySport concept 
learning task in this general form 
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Notation 

• Instances X: The set of items over which the 
concept is defined is called the set of 
instances. 

– In the current example, X: is the set of all possible 
days, each represented by the attributes Sky,  
AirTemp, Humidity, Wind, Water, and Forecast. 
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• Target concept c:  The concept or function to be 
learned is called the target concept.  

• In general, c can be any boolean valued function 
defined over the instances X; i.e. c : X  {0, 1}.  

– In the current example, the target concept 
corresponds to the value of the attribute EnjoySport  

– c(x) = 1 if EnjoySport = Yes, and  

– c(x) = 0 if EnjoySport = No. 
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• training examples D: When learning the 
target concept, the learner is presented a set 
of training examples, each consisting of an 
instance x from X, along with its target 
concept value c(x) 

• We will often write the ordered pair <x, c(x)> 
to describe the training example consisting of 
the instance x and its target concept value 
c(x). 
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• Instances for which c(x) = 1 are called positive 
examples, or members of the target concept. 

• Instances for which c(x) = 0 are called 
negative examples, or nonmembers of the 
target concept. 

Tejaswini H, Assistant Professor, 
Department of CSE 

24 



• Hypothesis h: Given a set of training examples of 
the target concept c, the problem faced by the 
learner is to hypothesize, or estimate, c.  

• We use the symbol H to denote the set of all 
possible  hypotheses that the learner may 
consider regarding the identity of the target 
concept.  

• In general, each hypothesis h in H represents a 
boolean-valued function defined over X; i.e.                       
h : X  {0, 1}.  

• The goal of the learner is to find a hypothesis h 
such that h(x) = c(x) for all x in X. 

Tejaswini H, Assistant Professor, 
Department of CSE 

25 



The Inductive Learning Hypothesis 

• Although the learning task is to determine a 
hypothesis h identical to the target concept c 
over the entire set of instances X, the only 
information available about c is its value over 
the training examples. 
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• Inductive learning algorithms can at best 
guarantee that the output hypothesis fits the 
target concept over the training data.  

• Lacking any further information, our 
assumption is that the best hypothesis 
regarding unseen instances is the hypothesis 
that best fits the observed training data.  

• This is the fundamental assumption of 
inductive learning. 
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The Inductive Learning Hypothesis 

• Any hypothesis found to approximate the 
target function well over a sufficiently large 
set of training examples will also 
approximate the target function well over 
other unobserved examples. 
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CONCEPT LEARNING AS SEARCH 

• Concept learning can be viewed as the task of 
searching through a large space of hypotheses 
implicitly defined by the hypothesis 
representation.  

– The goal of this search is to find the hypothesis 
that best fits the training examples 
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• distinct instances 

• syntactically distinct hypotheses within H 

• semantically distinct hypotheses 
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• We are interested in algorithms capable of 
efficiently searching very large or infinite 
hypothesis spaces, to find the hypotheses 
that best fit the training data. 
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General-to-Specific Ordering of 
Hypotheses 

• Many algorithms for concept learning organize the 
search through the hypothesis space by relying on a 
very useful structure that exists for any concept 
learning problem: a general-to-specific ordering of 
hypotheses. 

• To design learning algorithms that exhaustively 
search infinite hypothesis spaces without explicitly 
enumerating every hypothesis. 

Tejaswini H, Assistant Professor, 
Department of CSE 

32 



• h1 = <Sunny, ?, ?, Strong, ?, ?> 

• h2 = <Sunny, ?, ?, ?, ?, ?> 
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• First, for any instance x in X and hypothesis h 
in H, we say that x satisfies h  

– if and only if h(x) = 1 
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• we will say that hj is (strictly) more-general 
than hk (written hj >g hk)  

– if and only if (hj ≥g hk) ^ (hk !≥g hj) 

 

• sometimes find the inverse useful and will say 
that hj is more specific than hk when hk is 
more-general-than hj 
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Point to ponder …… 

• How can we use the more-general-than partial 
ordering to organize the search for a hypothesis 
consistent with the observed training examples?  
– One way is to begin with the most specific possible 

hypothesis in H, then generalize this hypothesis each 
time it fails to cover an observed positive training 
example.  

• We say that a hypothesis "covers" a positive 
example if it correctly classifies the example as 
positive. 
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Approaches to concept learning task: 

• 1. FIND-S algorithm 

• 2. Candidate-elimination algorithm 
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FIND-S: FINDING A MAXIMALLY 
SPECIFIC HYPOTHESIS 
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Step1: Find S 
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Step2 : Find S 
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Step2 : Find S 
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Iteration 4 and Step 3 : Find S 
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Hypothesis Space Search by Find-S 
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Issues/Questions!!?!! 

• Has the learner converged to the correct 
target concept?  

– Although FIND-S will find a hypothesis consistent 
with the training data, it has no way to determine 
whether it has found the only hypothesis in H 
consistent with the data (i.e., the correct target 
concept), or whether there are many other 
consistent hypotheses as well.  
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– We would prefer a learning algorithm that could 
determine whether it had converged and, if not, 
at least characterize its uncertainty regarding the 
true identity of the target concept. 
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• Why prefer the most specific hypothesis? In 
case there are multiple hypotheses consistent 
with the training examples, FIND-S will find 
the most specific.  

– It is unclear whether we should prefer this 
hypothesis over, say, the most general, or some 
other hypothesis of intermediate generality. 
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• Are the training examples consistent? In most 
practical learning problems there is some 
chance that the training examples will contain 
at least some errors or noise.  
– Such inconsistent sets of training examples can 

severely mislead FIND-S, given the fact that it 
ignores negative examples.  

– We would prefer an algorithm that could at least 
detect when the training data is inconsistent and, 
preferably, accommodate such errors. 
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• What if there are several maximally specific 
consistent hypotheses?   

– In the hypothesis language H for the EnjoySport 
task, there is always a unique, most specific 
hypothesis consistent with any set of positive 
examples.  

– However, for other hypothesis spaces there can be 
several maximally specific hypotheses consistent 
with the data. 
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VERSION SPACES AND  
THE CANDIDATE-ELIMINATION 

ALGORITHM 

• Although FIND-S outputs a hypothesis from H, that is 
consistent with the training examples, this is just one 
of many hypotheses from H that might fit the 
training data equally well. 

• The key idea in the CANDIDATE-ELIMINATION 
algorithm is to output a description of the set of all 
hypotheses consistent with the training examples. 
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• The CANDIDATE-ELIMINATION algorithm finds 
all describable hypotheses that are consistent 
with the observed training examples. 
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Basic definitions 1 
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consistent  v/s satisfies 

• An example x is said to satisfy hypothesis h 
when h(x) = 1, regardless of whether x is a 
positive or negative example of the target 
concept. 

• However, whether such an example is 
consistent with h depends on the target 
concept, and in particular, whether h(x) = c(x). 
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• The CANDIDATE-ELIMINATION algorithm represents 
the set of all hypotheses consistent with the 
observed training examples.  

• This subset of all hypotheses is called the version 
space with respect to the hypothesis space H and the 
training examples D, because it contains all plausible 
versions of the target concept. 
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Basic Definition 2 
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Version Space: 
LIST-THEN-ELIMINATION algorithm 

• One obvious way to represent the version space is 
simply to list all of its members. 

• This leads to a simple learning algorithm, which we 
might call the LIST-THEN-ELIMINATION algorithm 
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Basic definition 3, 4 
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CANDIDATE-ELIMINATION 
Algorithm 
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An Illustrative Example 
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Example 2 
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G0 = { <?,  ?,  ?,  ?,  ? > } 

S0 = { <φ,  φ ,  φ,   φ,   φ > } 
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x1 : <Japan,  Honda, Blue,  1980, Economy> , Positive 

 

Positive Example 

 

G1 = { <?,  ?,  ?,  ?,  ? > } 

S1  = { <Japan, Honda, Blue, 1980, Economy > } 
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x2 : <Japan,  Toyota,  Green,  1970,  Sports>, Negative 

Negative Example 

 

G2 = {  <?,  Honda,  ?,   ?, ? >,  

 <?,  ?,   Blue,   ?, ? >,  

            <?,  ?,   ?,   1980,  ? >,  

             <?,  ?,  ?,   ?,  Economy >} 

S2= {<Japan,  Honda ,  Blue,    1980,  Economy >} 
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x3 : <Japan,  Toyota,  Blue,  1990, Economy>, Positive 

Positive Example 

 

G3 = {   <?,  ?,  Blue,  ?, ? >,  

            <?,  ?,  ?,        ?,  Economy >} 

S3={    <Japan,  ? , Blue, ?,   Economy >} 
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x4 : <USA, Chryler, Red, 1980, Economy>, Negative 

G4 = {   <?,      ?,   Blue,  ?, ? >,  

            <Japan,  ?, ?,  ?,  Economy >} 

S4  = { <Japan,   ? ,  Blue,  ?,   Economy >} 
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x5 : <Japan,  Honda, White, 1980,  Economy> , Positive 

G5={ <Japan,   ?,  ?,  ?,   Economy >} 

S5={ <Japan, ?,  ?,  ?,   Economy >} 
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Example 3: 

SIZE COLOR SHAPE CLASS 

SMALL BLUE CIRCLE POSITIVE 

BIG RED CIRCLE NEGATIVE 

SMALL RED TRIANGLE NEGATIVE 

SMALL RED CIRCLE POSITIVE 

BIG BLUE CIRCLE NEGATIVE 
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G0 = { <?,  ?,  ?,  ?,  ? > } 

S0 = { <φ,  φ ,  φ,   φ,   φ > } 

  

 

Tejaswini H, Assistant Professor, 
Department of CSE 

76 



x1 : <small, blue, circle> , Positive 

 

Positive Example 

 

G1 = { <?,  ?,  ? > } 

S1  = {<small, blue,   circle> } 
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x2 : <big, red, circle>, Negative 

Negative Example 

 

G2 = {  <small,  ?,  ?>,  

 <?,   blue,  ?>} 

S2= { <small,  blue,  circle>} 
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x3 : <small, red, triangle>, Negative 

Negative Example 

 

G3 = { <small,  ?,  circle>,  

           <?,   blue,  ?>} 

S3= { <small,  blue,  circle>} 
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x4 : <small, red, circle>, Positive 

Positive Example 

G4 = { <small, ?, circle> }  

S4  = { <small, ?, circle> }   
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x5 : <big, blue, circle>, Negative 

Negative Example 

 

G5= { <small, ?, circle>}  

S5=    {  <small, ?, circle>}  

 

Tejaswini H, Assistant Professor, 
Department of CSE 

81 



2.7 INDUCTIVE BIAS 
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• CANDIDATE-ELIMINATION algorithm will 
converge toward the true target concept 
provided it is given accurate training 
examples and provided its initial hypothesis 
space contains the target concept. 
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• What if the target concept is not contained in 
the hypothesis space?  

– Can we avoid this difficulty by using a hypothesis 
space that includes every possible hypothesis? 
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• How does the size of this hypothesis space 
influence the ability of the algorithm to 
generalize to unobserved instances?  

• How does the size of the hypothesis space 
influence the number of training examples 
that must be observed?  

• These are fundamental questions for 
inductive inference in general. 
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• A Biased Hypothesis Space 

• An Unbiased Learner 

• The Futility of Bias-Free Learning 
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A Biased Hypothesis Space 
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• There are no hypotheses consistent with these 
three examples,  

– note that the most specific hypothesis consistent 
with the first two examples and representable in 
the given hypothesis space H is  

 S2 : <?, Warm, Normal, Strong, Cool, Change> 
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• This hypothesis, although it is the maximally 
specific hypothesis from H that is consistent 
with the first two examples, is already overly 
general:  

– it incorrectly covers the third (negative) training 
example. 
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• The problem is that we have biased the 
learner to consider only conjunctive 
hypotheses.  
– we restricted the hypothesis space to include only 

conjunctions of attribute values.  

• Because of this restriction, the hypothesis 
space is unable to represent even simple 
disjunctive target concepts such as "Sky = 
Sunny or Sky = Cloudy." 
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• In fact, given the following three training 
examples of this disjunctive hypothesis, our 
algorithm would find that there are zero 
hypotheses in the version space. 

• In this case we require a more expressive 
hypothesis space. 
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An Unbiased Learner 
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• The obvious solution to the problem of 
assuring that the target concept is in the 
hypothesis space H is: 

– to provide a hypothesis space capable of 
representing every teachable concept;  

– that is, it is capable of representing every 
possible subset of the instances X. 
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• In general, the set of all subsets of a set X is 
called the powerset of X. 
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• In the EnjoySport learning task,  

– Number of attributes : 6 

– the size of the instance space X of days described 
by the six available attributes is |X|: 3*2*2*2*2*2 
=  96. 
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• In general, the number of distinct subsets that 
can be defined over a set X containing |X| 
elements (i.e., the size of the power set of X) 
is 2|X| 

  

• Thus, there are 2|96| distinct target concepts 
that could be defined over this instance space 
and that our learner might be called upon to 
learn. 

 
Tejaswini H, Assistant Professor, 

Department of CSE 
97 



Let us reformulate…. 

• Let us reformulate the Enjoysport learning 
task in an unbiased way by defining 

–  a new hypothesis space H' that can represent 
every subset of instances;  

– that is, let H' correspond to the power set of X. 
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• One way to define such an H' is to allow 
arbitrary disjunctions, conjunctions, and 
negations of our earlier hypotheses. 

• For instance, the target concept "Sky = Sunny 
or Sky = Cloudy" could then be described as 

 (Sunny, ?, ?, ?, ?, ?) v (Cloudy, ?, ?, ?, ?, ?) 
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• Given this hypothesis space, we can safely use 
the CANDIDATE-ELIMINATION algorithm 
without worrying that the target concept 
might not be expressible.  

• However, it unfortunately raises a new, equally 
difficult problem:  

– our concept learning algorithm is now completely 
unable to generalize beyond the observed 
examples 
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• Suppose we present three positive examples 
(x1, x2, x3) and two negative examples (x4, 
x5) to the learner.  

• At this point, the S boundary of the version 
space will contain the hypothesis which is just 
the disjunction of the positive examples 
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• Similarly, the G boundary will consist of the 
hypothesis that rules out only the observed 
negative examples 
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• Therefore, the only examples that will be 
unambiguously classified by S and G are the 
observed training examples themselves.  

• In order to converge to a single, final target 
concept, we will have to present every single 
instance in X as a training example 
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• Unfortunately, the only instances that will 
produce a unanimous vote are the previously 
observed training examples.  

• For, all the other instances, taking a vote will 
be futile: each unobserved instance will be 
classified positive by precisely half the 
hypotheses in the version space and will be 
classified negative by the other half. 
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The Futility of Bias-Free Learning 
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• fundamental property of inductive inference: 

– a learner that makes no a priori assumptions 
regarding the identity of the target concept has 
no rational basis for classifying any unseen 
instances. 
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• In fact, the only reason that the CANDIDATE-
ELIMINATION was able to generalize beyond the 
observed training examples in our original 
formulation of the EnjoySport task is that it was 
biased by the implicit assumption that the target 
concept could be represented by a conjunction of 
attribute values.  
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• In cases where this assumption is correct (and 
the training examples are error-free), its 
classification of new instances will also be 
correct.  

• If this assumption is incorrect, however, it is 
certain that the CANDIDATE-ELIMINATION will 
misclassify at least some instances from X. 
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• Because inductive learning requires some 
form of prior assumptions, or inductive bias, 
we will find it useful to characterize different 
learning approaches by the inductive bias they 
employ 
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Need of generalizing beyond observed data… 

• consider the general setting in which an 
arbitrary learning algorithm L is provided an 
arbitrary set of training data Dc = {(x, c(x))} of 
some arbitrary target concept c. 
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• After training, L is asked to classify a new 
instance xi. 

• Let L(xi, Dc) denote the classification (e.g., 
positive or negative) that L assigns to xi after 
learning from the training data Dc.  

• We can describe this inductive inference step 
performed by L as follows: 
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• For example, if we take L to be the  
CANDIDATE-ELIMINATION, Dc, to be the 
training data from Table 2.1, and xi to be the 
fist instance from Table 2.6,  then the 
inductive inference performed in this case 
concludes that L(xi, Dc) = (EnjoySport = yes). 
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• it is interesting to ask what additional 
assumptions could be added to Dc ^ xi so that 
L(xi, Dc) would follow deductively.  

• We define the inductive bias of L as this set of 
additional assumptions. 
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• More precisely, we define the inductive bias of 
L to be the set of assumptions B such that for 
all new instances xi 

 

 

 

• Thus, we define the inductive bias of a learner 
as the set of additional assumptions B 
sufficient to justify its inductive inferences as 
deductive inferences. 
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• Inductive bias of CANDIDATE-ELIMINATION 
Algorithm:  The target concept c is contained 
in the given hypothesis space H. 
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• One advantage of viewing inductive inference 
systems in terms of their inductive bias is that 
it provides a nonprocedural means of 
characterizing their policy for generalizing 
beyond the observed data.  

• A second advantage is that it allows 
comparison of different learners according to 
the strength of the inductive bias they employ. 
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1. ROTE-LEARNER: Learning corresponds simply to storing each 
observed training example in memory. Subsequent instances 
are classified by looking them up in memory. If the instance 
is found in memory, the stored classification is returned. 
Otherwise, the system refuses to classify the new instance. 

2. CANDIDATE-ELIMINATION algorithm: New instances are 
classified only in the case where all members of the current 
version space agree on the classification. Otherwise, the 
system refuses to classify the new instance. 

3. FIND-S: This algorithm, described earlier, finds the most 
specific hypothesis consistent with the training examples. It 
then uses this hypothesis to classify all subsequent 
instances. 
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