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Image Enhancement In The Frequency Domain
• Module – 3 8 Hours

• Image Enhancement In Frequency Domain: 

• Introduction, 

• Fourier Transform, 

• Discrete Fourier Transform (DFT), 

• properties of DFT, 

• Discrete Cosine Transform (DCT), 

• Image filtering in frequency domain..
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Image Enhancement In The Frequency Domain
• Introduction

• These are proposed by French mathematician Joseph Fourier 

• His contribution basically states that, any periodic function can be 
expressed as sum of sines and/or cosines of different frequencies 
each multiplied by a different coefficient 

• This sum is termed as Fourier series.

• Irrespective of how complicated the function is, if it is periodic 
and if it satisfies some mathematical conditions, it can be 
represented by such a sum

• The functions which are not periodic but whose area under the 
curve is finite can be expressed as integral of sines and/or cosines 
multiplied by the weighting function.

• This is called as Fourier Transform and is more widely used than 
Fourier series
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Image Enhancement In The Frequency Domain
• The important characteristic of both F.S. and F.T. is that a function 

expressed either in F.S. or F.T. can be reconstructed ( recovered) 
via a reverse process with no loss of information

• This allows us to work in Fourier domain and then return to the 
original domain without loss of information

• Since we are dealing with images which are functions of finite 
duration, we will be using Fourier Transform as a tool

• Basic concepts:

• A complex number is defined as C= R+jI

• Where R and I are real numbers and i is imaginary number equal 
to square root of -1.

• .
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Image Enhancement In The Frequency Domain
• Polar representation of complex numbers

• .

5



Image Enhancement In The Spatial Domain
• Fourier Series

• We know that, a function f(t) of a continuous variable t, periodic with 

period T can be expresses as sum of sines and cosines multiplied by 

appropriate coefficients

• This sum known as Fourier series can be formulated as 

• .

• .                                                                                  ……. (1)

• Where the coefficients are

• (2)



Image Enhancement In The Frequency Domain
• Impulses and their Sifting:

• Before studying the Fourier Transforms we need to learn about 
impulses and their sifting property

• A unit impulse of a continuous variable t located at t=0 denoted 
δ(t) is defined by 

• ….3-a.

• This is constrained to satisfy the identity 

• ….3.b

• This means that, at time t, impulse can be viewed as a spike of 
infinite amplitude and zero duration having unit area 



Image Enhancement In The Frequency Domain
• An impulse has the sifting property w.r.t. integration

• …(4)

• .provided that f(t) is continuous at t=0

• Sifting yields the value of the function f(t), at the location of the 
impulse. ( previous equation, at t=0)

• A more general statement of the sifting property involves the 
impusle located at an arbitrary point t0, denoted by δ(t-t0). 

• Now sifting property results in 

…..(5)

• This yields the value of the function at the location t0.



Image Enhancement In The Frequency Domain
• Suppose if f(t)= cos(t), using the impulse δ(t-π) in the equation (5) 

we get the result as f(π)=cos(π) = -1

• Let x represent a discrete variable. 

• The unit discrete impulse δ(x) serves the same purpose in the 
context of discrete systems, as the impulse δ(t) does while working 
with continuous variables

• δ(x) is defined by 

• .

• …..(6)

• This also satisfies the discrete equivalent of the equation (3.b)

•



Image Enhancement In The Frequency Domain
• Sifting property of the discrete impulse is given by 

• …(7)

• More general form of sifting property can be written as 

• .

• ….(8)

• Here also it is clear that, sifting gives the value of the function f(x) 
at the location of impulse

• Schematically unit discrete impulse can be shown as below



Image Enhancement In The Frequency Domain
• Impulse train:

• This is defined as the sum of infinitely many periodic impulses 
separated by ΔT units

• Mathematically we can write this as

• ….(9)

• Schematically we have impulse train as shown below

• .



Image Enhancement In The Frequency Domain
• Fourier transforms of a function with one variable

• Given single variable continuous function f(t) of a continuous 
variable t

• Fourier transform F(u) is given by 

• ….(10)

• Where μ is also a continuous variable

• Though we see two variables t and μ, since t gets integrated out, 
we can see that F.T. is a function of only one variable

• For simplicity let us denote F.T. as Ƒ{f(t)} = F(μ)

• Thus Fourier transform of f(t) is given by 

• …..(11)



Image Enhancement In The Frequency Domain
• Suppose if we are given with F(μ) we can get back f(t) by using 

inverse Fourier Transform

• i.e. 

• … (12)

• Equations 11 and 12 are called as Fourier transform pairs

• Using Euler’s formula we can write equation 11 as .



Image Enhancement In The Frequency Domain
• If f(t) is real, its transform is complex. 

• Note that the Fourier transform is an expansion of f(t) multiplied 
by sinusoidal terms whose frequencies are determined by the 
values of μ (variable t is integrated out). 

• Because the only variable left after integration is frequency, we say 
that the domain of the Fourier transform is the frequency domain.

• In our discussion, t can represent any continuous variable, and the 
units of the frequency variable μ depend on the units of t. 

• For example, if t represents time in seconds, the units of μ are 
cycles/sec or Hertz (Hz). 

• If t represents distance in meters, then the units of μ are 
cycles/meter, and so on. 

• In other words, the units of the frequency domain are cycles per 
unit of the independent variable of the input function..



Image Enhancement In The Spatial Domain
• Fourier Series

• We know that, a function f(t) of a continuous variable t, periodic with 

period T can be expresses as sum of sines and cosines multiplied by 

appropriate coefficients

• This sum known as Fourier series can be formulated as 

• .

• .                                                                                  ……. (1)

• Where the coefficients are

• (2)



Image Enhancement In The Frequency Domain
• Fourier transforms of a function with one variable

• Given single variable continuous function f(t) of a continuous 
variable t

• Fourier transform F(u) is given by 

• ….(10)

• Where μ is also a continuous variable

• Though we see two variables t and μ, since t gets integrated out, 
we can see that F.T. is a function of only one variable

• For simplicity let us denote F.T. as Ƒ{f(t)} = F(μ)

• Thus Fourier transform of f(t) is given by 

• …..(11)



Image Enhancement In The Frequency Domain
• Suppose if we are given with F(μ) we can get back f(t) by using 

inverse Fourier Transform

• i.e. 

• … (12)

• Equations 11 and 12 are called as Fourier transform pairs

• Using Euler’s formula we can write equation 11 as .

• … (13) 



Image Enhancement In The Frequency Domain
• Computing Fourier transform

• Consider the function shown below

• Using the equation (11) we can write the 

• Applying the integration rules we get .



Image Enhancement In The Frequency Domain
• Further simplifying we get

• Using the identity sin θ = (ejθ – e-jθ)/2j we can further simplify 
this as 

• F(u) = 



Image Enhancement In The Frequency Domain
• In this  equation we can see that, the complex terms of Fourier 

transform are nicely combined into a sine function

• The result in the last step of the previous expression is known as 
sinc function

• where sinc(0) = 1, and sinc(m) = 0 for all other integer values of 
m. 

• The plot of F(μ) is shown below



Image Enhancement In The Frequency Domain
• In general, the Fourier transform contains complex terms, and it is 

customary for display purposes to work with the magnitude of the 
transform (a real quantity), which is called the Fourier spectrum or 
the frequency spectrum:

• i.e. 

• Figure below shows a plot of |F(μ)| as a function of frequency. 



Image Enhancement In The Frequency Domain
• The key properties to note are 

• The locations of the zeros of both F(μ) and |F(μ)| are inversely 
proportional to the width, W, of the "box" function, 

• The height of the lobes decreases as a function of distance from 
the origin, and 

• The function extends to infinity for both positive and negative 
values of μ.

• These properties are helpful in interpreting the spectra of two-
dimensional Fourier transforms of images.



Image Enhancement In The Frequency Domain
• Convolution

• This one more building block often used. 

• The idea of convolution was learnt already. 

• We learned in that section that convolution of two functions 
involves flipping (rotating by 180°) one function about its origin 
and sliding it past the other. 

• At each displacement in the sliding process, we perform a 
computation, 

• i.e. a sum of products.
• In the present discussion, we are interested in the convolution of 

two continuous functions, f(t) and h(t), of one continuous variable, 
t, so we have to use integration instead of a summation. 



Image Enhancement In The Frequency Domain
• The convolution of these two functions, denoted as before by the 

operator *, is defined as 

• …(14)

• where the – sign indicates the flipping which was done in filtering

• t is the displacement needed to slide one function past the other, 
and 

• τ is a dummy variable that is integrated out. 

• We assume for that the functions extend from -∞ to ∞.

• We have seen the basic mechanics of convolution in module 2, 

• At the moment, we are interested in finding the Fourier transform 
of Eq (14)



Image Enhancement In The Frequency Domain
• We start with equation 

• The term inside the brackets is the Fourier transform of h(t - τ). 

• We see later that F{h(t - τ)} = H(μ)e-j2πμτ, where H(μ) is the 
Fourier transform of h(t). 

• Using this fact in the preceding equation gives us



Image Enhancement In The Frequency Domain

• We refer to the domain of t as the spatial domain, and the domain 
of IL as the frequency domain, 

• The preceding equation tells us that the Fourier transform of the 
convolution of two functions in the spatial domain is equal to the 
product in the frequency domain of the Fourier transforms of the 
two functions 



Image Enhancement In The Frequency Domain
• Conversely, if we have the product of the two transforms, we can 

obtain the convolution in the spatial domain by computing the 
inverse Fourier transform.

• In other words, f(t) * h(t) and H(u) F(u) are a Fourier transform 
pair. This result is one-half of the convolution theorem and is 
written as

• The double arrow is used to indicate that the expression on the 
right is obtained by taking the Fourier transform of the expression 
on the left, while the expression on the left is obtained by taking 
the inverse Fourier transform of the expression on the right.

• Following a similar development would result in the other half of 
the convolution theorem:



Image Enhancement In The Frequency Domain
• This states that convolution in the frequency domain is analogous 

to multiplication in the spatial domain, the two being related by the 
forward and inverse Fourier transforms, respectively



Image Enhancement In The Frequency Domain
• If we have the product of the two transforms, we can obtain the 

convolution in the spatial domain by computing the inverse 
Fourier transform

• Convolution in the frequency domain is analogous to 
multiplication in the spatial domain, the two being related by the 
forward and inverse Fourier transforms, respectively



Image Enhancement In The Frequency Domain
• Sampling and the Fourier Transform of Sampled Functions

• Sampling

• W.k.t. Continuous functions have to be converted into a sequence 
of discrete values before they can be processed in a computer. 

• This is done by using sampling and quantization, as discussed in 
module 1 

• Now we examine sampling in more detail.

• Consider a continuous function, f(t) with (-∞ < t < ∞), that we 
wish to sample at uniform intervals (ΔT) of the independent 
variable t. 



Image Enhancement In The Frequency Domain
• One simple way of achieving sampling is to multiply f(t) by a 

sampling function, equal to the train of impulses, separated by ΔT 
units. 

• i.e.                                                                                  ….. (1)  

• Each component of this summation is an impulse weighted by the 
value of f(t) at that location



Image Enhancement In The Frequency Domain
• The value of each sample is then given by the "strength" of the 

weighted impulse, which is obtained by integration. 

• That is, the value, fk, of an arbitrary sample in the sequence is 
given by

• Using the sifting property, we can write 

• This equation is valid for all values of k from -∞,..-1,0,1,2,..∞

• Schematically we can show this as…



Image Enhancement In The Frequency Domain



Image Enhancement In The Frequency Domain
• The Fourier Transform of Sampled Functions

• Let F(μ) denote the Fourier transform of a continuous function f(t). 

• The corresponding sampled function, f (t), is the product of f(t) 
and an impulse train. 

• From the convolution theorem, it is known that, the F.T. of the 
product of two functions in the spatial domain is the convolution 
of the transforms of the two functions in the frequency domain. 
Thus, the Fourier transform, F(μ), of the sampled function f(t) is:

•

• …..(2)



Image Enhancement In The Frequency Domain
• Where S(μ) is the Fourier transform of impulse train and is given 

by

• Thus convolution of F(μ) and S(μ) is obtained from



Image Enhancement In The Frequency Domain

• The last step is obtained by using sifting property 
• The summation in the last line of above Eq shows that the Fourier 

transform F~(μ) of the sampled function f(t), is an infinite, periodic 
sequence of copies of F(μ), the transform of the original, continuous 
function. 

• The separation between copies is determined by the value of 1/ΔT. 
• Observe that although f

~
(t) is a sampled function, its transform F(μ) is 

continuous because it consists of copies of F(μ) which is a continuous 
function.



Image Enhancement In The Frequency Domain
• Previous discussions can be graphically shown as below 

• Consider the Fourier Transform F(μ) of a function f(t) plotted as 
below

• The transform F
~
(μ) of the sampled function is given below

• We can see that, enough sampling rate was chosen to provide 
sufficient separation between periods and thereby preserving F(μ) 



Image Enhancement In The Frequency Domain

• In this we can see that, sampling rate chosen is just enough to 
preserve F(μ)

• In this case the sampling rate chosen was below minimum required 
to maintain distinct copies of F(μ) and thus has failed to preserve 
F(μ). 



Image Enhancement In The Frequency Domain
• These three cases are known as over-sampling, critically sampling 

and under-sampling

• How to choose sampling rate?? - Sampling theorem answers this

• A function f(t) whose Fourier transform is zero for values of 
frequencies outside a finite interval (band) [-μmax, μmax] about the 
origin is called a band-limited function. 

• Figure below is such a function.

• Similarly, Fig. (b) is a more detailed view of the transform of a 
critically sampled function. 



Image Enhancement In The Frequency Domain
• A lower value of 1/ΔT would cause the periods in F(μ) to merge; a 

higher value would provide a clean separation between the 
periods.

• We can recover f(t) from its sampled version- if we can isolate a 
copy of F(μ) from the periodic sequence of copies of this function 
contained in F

~
(μ), the transform of the sampled function f(t). 

• We have seen that F(μ) is a continuous, periodic function with 
period 1/ ΔT. 

• Therefore, all we need is one complete period to characterize the 
entire transform. 

• This implies that we can recover f(t) from that single period by 
using the inverse Fourier transform.



Image Enhancement In The Frequency Domain
• Extracting a single period that is equal to F(μ) from F

~
(μ) is 

possible if the separation between copies is sufficient 

• In figure (b) sufficient separation is guaranteed if 1/2ΔT > μmax or 

• This equation indicates that a continuous, band-limited function 
can be recovered completely from a set of its samples if the 
samples are acquired at a rate exceeding twice the highest 
frequency content of the function. 

• This result is known as the sampling theorem.

• Based on this result we can say that, no information is lost if a 
continuous, band-limited function is represented by samples 
acquired at a rate greater than twice the highest frequency content 
of the function. 



Image Enhancement In The Frequency Domain
• Conversely, we can say that the maximum frequency that can be 

"captured" by sampling a signal at a rate 1/ΔT is μmax = 1/2ΔT. 

• Sampling at the Nyquist rate sometimes is sufficient for perfect 
function recovery, but there are cases in which this leads to 
difficulties 

• Thus, the sampling theorem specifies that sampling must exceed 
the Nyquist rate.



Image Enhancement In The Frequency Domain
• How to recover F(μ) from F

~
(μ)

• Consider Fig. below, which shows the Fourier transform of a 
function sampled at a rate slightly higher than the Nyquist rate.

•

• Consider another function H(μ) defined by the equation



Image Enhancement In The Frequency Domain
• This can be graphically represented as 

• If we multiply these two signals, then we get the following 
representation

• This is nothing but F(μ) obtained by 

•

•



Image Enhancement In The Frequency Domain
• Once we have F(μ) we can recover f(t) by using the inverse Fourier 

transform

• These equations show that, theoretically it is possible to recover the a 
band-limited function from samples of the function obtained at a rate 
exceeding twice the highest frequency content of the function. 

• The requirement that f(t) must be band-limited implies that f(t) must 
extend from 00 to 00, a condition that cannot be met in practice.

• This filter is called low pass filter as it passes lower frequency at the

• low end of the frequency range but it eliminates (filters out) all higher 
frequencies.

• It is called also an ideal lowpass filter because of its infinitely rapid 
transitions in amplitude



Image Enhancement In The Frequency Domain
• Since they are instrumental in recovering (reconstructing) the 

original function from its samples, these filters are called 
reconstruction filters.



Image Enhancement In The Frequency Domain
• The Discrete Fourier Transform (OFT) of One Variable

• Here we derive discrete Fourier transform (DFT) starting from 
basic principles. 

• Obtaining the DFT from the Continuous Transform of a Sampled 
Function

• Fourier transform of a sampled, band-limited function extending 
from -∞ to ∞ is a continuous, periodic function that also extends 
from -∞ to ∞. 

• In practice, we work with a finite number of samples, and here we 
derive the DFT corresponding to such finite sample sets

• We have seen an equation which gives the transform, F
~
(μ) of 

sampled data in terms of the transform of the original function, but 
it does not give us an expression for F

~
(μ) in terms of the sampled 

function f
~
(t) itself.



Image Enhancement In The Frequency Domain
• We find such equation by using the definition of F.T.

• (1)

• By substituting                                                            , we get

•



Image Enhancement In The Frequency Domain

• (2)

•



Image Enhancement In The Frequency Domain
• The last step is obtained from the result

• We know that, though fn is a discrete function, its Fourier F
~
(μ) is 

continuous and infinitely periodic with period 1/ ΔT

• Therefore, we need to characterize F
~
(μ) is for one period, and 

sampling one period is the basis for the DFT.

• Suppose that we want to obtain M equally spaced samples of F~(μ)
taken over the period μ = 0 to μ = 1/ ΔT. 

• This is accomplished by taking the samples at the following 
frequencies:

• (3) 



Image Enhancement In The Frequency Domain
• Substituting this result in equation (2) we get

• (4)

• This is the expression for discrete Fourier transform

• Given a set {fn} consisting of M samples of f(t), Eq. 4 yields a 
sample set {Fm} of M complex discrete values corresponding to 
the discrete Fourier transform of the input sample set. 

• Conversely, given {Fm}, we can recover the sample set {fn} by 
using the inverse discrete Fourier transform (IDFT)



Image Enhancement In The Frequency Domain
• Eqs. 4 and 5 form a discrete Fourier transform pair which indicates 

that the forward and inverse Fourier transforms exist for any set of 
samples whose values are finite. 

• Note that neither expression depends explicitly on the sampling 
interval ΔT nor on the frequency intervals of Eq. 3. 

• Therefore, the DFT pair is applicable to any finite set of discrete 
samples taken uniformly.

• Here we used m and n to denote discrete variables because it is 
typical to do so for derivations. 

• It is more intuitive, especially in two dimensions, to use the 
notation x and y for image coordinate variables and u and v for 
frequency variables, where these are understood to be integers. 

• Then, Eqs. 4 and 5 become



Image Enhancement In The Frequency Domain

• (6)  

• and

• (7)

• where we used functional notation instead of subscripts for 
simplicity. 

• Clearly, F(u) == Fm and f(x) = fn. 

• Now onwards we use Eqs. 6 and 7 to denote the 1-D DFT pair. 



Image Enhancement In The Frequency Domain
• It can be shown that both the forward and inverse discrete 

transforms are infinitely periodic, with period M. 

• That is,          F(μ) = F(μ + kM) (8)

• and

• f(x) = f(x + kM) (9)

• where k is an integer.

• The discrete form of convolution is given by

• (10)

• for x = 0, 1,2, ... , M - 1.



Image Enhancement In The Frequency Domain
• Since the functions used in the preceding formulations are 

periodic, their convolution also is periodic. 

• Equation (10) gives one period of the periodic convolution. 

• For this reason, this equation often is referred to as circular 
convolution, and is a direct result of the periodicity of the DFT and 
its inverse. 

• This is in contrast with the convolution we studied earlier, in 
which values of the displacement, x, were determined by sliding 
one function completely past the other, and were not fixed to the 
range [0, M - 1] as in circular convolution. 



Image Enhancement In The Frequency Domain
• E.g. : calculation of DFT

• Consider four samples of a continuous function, f(t), taken AT 
units apart as shown below

• the sampled values in the x-domain are shown in figure b. 

• Note that the values of x are 0, 1, 2, and 3, indicating that we could 
be referring to any four samples of f(t).



Image Enhancement In The Frequency Domain
• From equation (6)

• The next value of F(μ) is F(1) and is obtained by

• Similarly we can obtain Similarly, F(2) = -(1 + 0j) and 
F(3) = -(3 + 2j). 

• Observe that all values of f(x) are used in computing each term of 
F(μ).



Image Enhancement In The Frequency Domain
• Suppose that, we were given F(μ) and were asked to compute its 

inverse, we would proceed in the same manner, but using the 
inverse transform



Image Enhancement In The Frequency Domain
• Extension to Functions of Two Variables

• Now we extend concepts learnt earlier to two variables

• The 2-D Impulse and Its Sifting Property

• The impulse, 8(t, z), of two continuous variables, t and z, is 
defined as

• (11-a)

• Satisfying the condition that, 

• (11-b)



Image Enhancement In The Frequency Domain
• Similar to 1-D, the 2-D impulse also exhibits the sifting property 

under integration,

• i.e. 

• more generally for an impulse located at coordinates (t0, Z0),

• (12)

• We can see that the sifting property yields the value of the function 
f(t, z) at the location of the impulse

• For discrete variables x and y, the 2-D discrete impulse is defined 
as 



Image Enhancement In The Frequency Domain
• Sifting property for discrete impulse is defined by 

• (13)

• where f(x, y) is a function of discrete variables x and y. 

• For an impulse located at coordinates (x0, y0) the sifting property is

• (14)

• Here also the sifting property of a discrete impulse yields the value 
of the discrete function f(x, y) at the location of the impulse



Image Enhancement In The Frequency Domain
• The 2-D Continuous Fourier Transform Pair

• Let f(t, z) be a continuous function of two continuous variables, t 
and z. 

• The two-dimensional, continuous Fourier transform pair is given 
by the expressions

• (15)

• and

• (16)

• where μ and v are the frequency variables. 

• When referring to images, t and z are interpreted to be continuous 
spatial variables. 

• The variables μ and v belong to the continuous frequency domain



Image Enhancement In The Frequency Domain
• Two-Dimensional Sampling and the 2-D Sampling Theorem
• Sampling in two dimensions can be modeled using the sampling 

function (2-D impulse train):

• (17)  
• where ΔT and ΔZ are the separations between samples along the t-

and z-axis of the continuous function f(t, z). 
• Equation (17) describes a set of periodic impulses extending 

infinitely along the two axes

• As in the l-D case, multiplying f(t, z) by sΔTΔz(t, z) yields the 
sampled function



Image Enhancement In The Frequency Domain
• Function f(t, z) is said to be band-limited if its Fourier transform is 

outside a rectangle established by the intervals [-μmax, μmax] and 
[-vmax , vmax]:

• that is,                                                                                        (18)

• 2-D Sampling theorem
• The two-dimensional sampling theorem states that a continuous, 

band-limited function f(t, z) can be recovered with no error from a 
set of its samples if the sampling intervals are

• and 
• i.e. no information is lost if a 2-D, band-limited, continuous 

function is represented by samples acquired at rates greater than 
twice the highest frequency content of the function in both the 
wand v-directions.



Image Enhancement In The Frequency Domain
• The 2-D Discrete Fourier Transform and Its Inverse

• 2-D discrete Fourier transform (DFT) is given by the equation

• where f(x, y) is a digital image of size M x N. 

• Above Eq. must be evaluated for values of the discrete variables u  
and v in the ranges u = 0, 1, 2, ... , M - 1 and v = 0, 1, 2, . , .. N – 1

• Given the transform F(u, v), we can obtain f(x, y) by using the 
inverse discrete Fourier transform (IDFT): 



Image Enhancement In The Frequency Domain
• for x = 0,1,2, ... , M - 1 and y = 0,1,2, ... , N -1. 

• Above two equations form the 2-D discrete Fourier transform pair.

• Some Properties of the 2-D Discrete Fourier Transform

• Relationships Between Spatial and Frequency Intervals

• Suppose that a continuous function f(t, z) is sampled to form a 
digital image, f(x, y), consisting of M x N samples taken in the t 
and z-directions, respectively. 

• Let ΔT and ΔZ denote the separations between samples as shown 
below
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• Then, the separations between the corresponding discrete, 

frequency domain variables are given by 

• and

• Note that the separations between samples in the frequency 
domain are inversely proportional both to the spacing between 
spatial samples and the number of samples

• Translation and Rotation

• It can be shown by direct substitution into the equations of 2-D 
DFT and 2-D IDFT that the Fourier transform pair satisfies the 
following translation properties
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• That is, multiplying f(x, y) by the exponential shown shifts the 
origin of the DFT to (u0, v0) and, 

• Also multiplying F(u, v) by the negative of that exponential shifts 
the origin of f(x, y) to (x0, y0). 

• Note that translation has no effect on the magnitude (spectrum) of 
F(u, v).
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• Using the polar coordinates

• x = r cosθ, y = r sinθ ,  u = w cosφ, v = w sinφ results in the 
following transform pair:

• This indicates that rotating f(x, y) by an angle θ0 rotates F(u, v) by 
the same angle. 

• Also rotating F(u, v) rotates f(x, y) by the same angle

• Periodicity

• As in the 1-D case, the 2-D Fourier transform and its inverse are 
infinitely periodic in the u and v directions; that is,
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• where k1 and k2 are integers

• The periodicities of the transform and its inverse are important 
issues in the implementation of DFT-based algorithms. 

• Consider the 1-D spectrum as shown in Fig. (a).



Image Enhancement In The Frequency Domain

• The  transform data in the interval from 0 to M -1 consists of two 
back-to-back half periods meeting at point M/2. 

• For display and filtering purposes, it is more convenient to have in 
this interval a complete period of the transform in which the data 
are contiguous, as in Fig. (b)



Image Enhancement In The Frequency Domain
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• From translation property we can write that

• In other words, multiplying f(x) by the exponential term shown 
shifts the data so that the origin, F(0), is located at u0. 

• If we let u0 = M/2, the exponential term becomes ejπx which is 
equal to (-1)x because x is an integer 

• Thus we get 

• Thus multiplying f(x) by (-1)x shifts the data so that F(0) is at the 
center of the interval [0, M - 1], which corresponds to Fig. (b), as 
desired 



Image Enhancement In The Frequency Domain
• Basics of filtering in frequency domain

• The equations for discrete DFT and IDFT are as below 

• There is some relationship between frequency components of F.T> 
and spatial features of the image

• Since frequency is directly related to the spatial rate of change, we 
can relate the frequencies in the F.T. with the patterns of the 
intensity variations in the image. 



Image Enhancement In The Frequency Domain
• When we express DFT in polar form we get

• In the transform we have access to magnitude and phase angle.

• Visual  analysis of phase angle is not very useful 

• Magnitude or spectrum provides some useful guidelines as to 
gross characteristics of the image from which spectrum was 
generated
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• Filtering in frequency domain is based on modifying the F.T. to 

achieve a specific objective and then computing the inverse DFT 
to get back the image 

• For a given digital image f(x, y) of size M X N, basic filtering 
equation will be of the form 

• where           is the IDFT  

• F(u, v)  is DFT of the image  

• H(u, v) is the filtering function

• g(x, y) is the output image

• Functions F, H and g are arrays of size M X N, same as f(x, y)
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• The product F(u, v)H(u, v) is obtained using array multiplication

• Specification of H(u, v) is simplified by using functions that are 
symmetric about their center.

• This required that, F(u, v) also to be centered

• This is done by multiplying the input image by (-1)x+y before 
computing the transform 

• One of the simplest filter is with H(u, v) with 0 at the center of the 
transform and 1 elsewhere. 

• This filter will reject the dc term in the transform and pass all the 
other terms of F(u, v) 
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• There is a known result about averaging..

• From the above equation, it is clear that, average intensity of the 
image is the DC component 

• So setting this value to zero will reduce the average intensity of the 
output image to zero.

• This can be seen in the following figure
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• The output is darker than the original image

• Average of zero implies the presence of negative intensities. 

• In the output for viewing purpose, all the negative intensities are 
clipped to value 0
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• Typically low frequencies in the transform are related to slow 

varying intensity component of the image 

• E.g.- walls of the room, cloudless sky etc

• High frequencies are related to sharp transitions in the intensities

• E.g. edges, noise etc.

• Thus we expect that, a filter H(u, v) which attenuates the high 
frequencies and allows low frequencies ( LPF) would blur the 
image

• Also an HPF would enhance the sharp details of the image but 
there will be reduction in the contrast of the image
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• .
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• In the last filter, a constant a is added 

• It does not affect the sharpening of the image but it prevents the 
elimination of DC term and thereby preserving the tonality of the 
image

• By convolution theorem, we know that, multiplication in 
frequency domain is same as convolution in spatial domain. 

• If the functions under consideration are not properly padded this 
leads to an error called wraparound error

• Consider an image  
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• When this is applied to a Gaussian LPF without padding we get 

the following image

• Is image blurred??

• But blurring is not uniform

• Vertical edges are not blurred.

• If we apply padding suitably then??.
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• How much padding is needed??

•
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• Note that, DFT algorithms tend to execute fast with arrays of even 

size

• So choose P and Q as the smallest even integers that satisfy above 
conditions

• How to do padding if the filter is given in frequency domain??

• Though there are a few issues we use padding to the size of P X Q

• Summary .. 
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• .
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• .



Image Enhancement In The Frequency Domain
• Correspondence between filtering in spatial and frequency 

domains.

• W.k.t. convolution theorem connects filtering in spatial and 
frequency domains 

• We have seen that, in frequency domain, filtering is done by 
multiplying filter function H(u, v) with F(u, v) the F.T. of the 
image

• Suppose that, a filter H(u,v) is given to us and we need to find its 
spatial domain equivalent

• If we let f(x, y) = δ(x, y) this gives us F(u, v) = 1

• Then the filtered output will be 

• This is nothing but the inverse transform of the frequency domain 
filter which results in the corresponding filter in spatial domain
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• Also we can say, given a spatial filter we obtain its frequency 

domain representation by taking forward F.T. of the filter

• Thus we can say these two filters form a Fourier Transform pair

• As the filter h(x, y) can be obtained from the response of 
frequency domain filter to an impulse, this is called as impulse 
response of H(u, v)

• As the discrete implementation of the above equation are finite, 
these are also called as Finite Impulse response(FIR) filters.

• While discussing spatial domain convolution we have seen that, 
convolution could be done on functions of different size
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• But when we speak about convolution in the context of DFT it 

needs functions to be of same size

• In practice, we prefer to implement convolution filtering using 
spatial domain convolution equation due to speed and ease of 
implementation

• But filtering concepts are more intuitive in frequency domain

• One way to take advantages of both domains is to specify a filter 
in frequency domain, compute its IDFT and then use the resulting 
spatial filter as guide for constructing smaller spatial masks 

• Now let us use Gaussian filter to illustrate this

• Filters based on Gaussian functions have a special property that, 
both forward and inverse transforms of Gaussian functions are 
Real Gaussian functions
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• Let H(u) denote 1-D Gaussian filter in frequency domain

• Where σ is the std. devialtion

• Corresponding filter in the spatial domain is obtained by taking 
inverse FT of H(u, v)

• Thus we get 

• These two equations have some important features 

• They are Fourier transform pairs. Both components of which are 
Gaussian and real – so no need to worry about complex numbers

• Secondly the functions behave reciprocally. i.e. when H(u) has 
broader profile ( large value of σ) h(x) has a narrow profile 
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• As H(u) approaches infinity, h(x) tends towards impulse

• The plots of Gaussian low pass filter in frequency domain and 
corresponding low pass filter in the spatial domain are shown 
below .
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• Image smoothing using frequency domain filters

• We know that, edges or any other sharp intensity transitions such 
as noise in an image contribute significantly to the high frequency 
content of its Fourier transform

• Thus in frequency domain, smoothing(blurring) is achieved by 
suppressing the high frequency components

• This is called as low pass filtering

• Here we focus on three types of filters
o Ideal (very sharp filtering)

o Gaussian ( Very smooth filtering)

o Butterworth ( has an entity called filter order)–

o If it is higher – this filter approaches Ideal filter

o For lower values it approaches Gaussian filter
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• All filtering here follows the procedure shown below
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• H(u,v) are discrete functions of size P x Q – meaning that, 
frequency variables are in the range u= 1, 2 , .. P-1 and v = =1, 2, .. 
Q-1

• .
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• Ideal Low Pass filters:

• A 2-D low pass filter, that passes without attenuation all 
frequencies within a circle of radius D0 from the origin and cuts 
off all frequencies outside this circle is called an ideal low pass 
filter

• It is specified by the function

• .where D0 is a positive constant 

• D(u, v) is the distance between a point (u, v) in the frequency 
domain and the center of the frequency rectangle and is given by



Image Enhancement In The Frequency Domain
• P and Q are padded sizes as seen earlier

• Figure below shows the perspective plot of H(u, v) along with 
filter displayed as image

• .
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• The name ideal means, all frequencies on or inside the circle of 

radius D0 are passed with no attenuation and all the other 
frequencies outside the circle are completely attenuated ( filtered 
out)

• The point of transition from H(u, v) = 1 to 0 is called the cut off 
frequency

• In the figure cut off frequency is D0

• This type of sharp cut off frequencies are not possible to 
implement in electronic components but can be simulated in 
software

• .
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• The LPF introduced here are compared by studying their behavior 

as a function of same cut off frequencies

• One way to establish a set of standard loci is to compute circles 
that enclose specified amounts of Total image power PT

• This is obtained by adding the components of the power spectrum 
of padded image at each point (u, v) for u = 0, 1, 2 …P-1 and v =0, 
1, 2, .. Q-1

• i.e. 

• Where P(u, v) is power spectrum and is given by
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• If the DFT is centered a circle,  with radius D0 with origin at the 
center of the frequency rectangle encloses α percent of the power, 
where 
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• Note that summation is taken over values of (u, v) that lie inside 

the circle and also on the boundary

• Consider a test pattern image as shown below

• Various D0 values taken are 10, 30, 60, 160 and 460 pixels
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• .
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• These circles enclose α percent of image power for α =87.0, 93.1, 

95.7, 97.8 and 99.2 % respectively

• Now let us apply this ILPF to the image of test pattern with the 
above mentioned radii 

• This output is obtained with radius of 10

• This is useless for all practical purposes. Severe blurring here 
indicates that, most of the sharp detail information is contained in 
the 13% of the power removed by the filter

• As radius increases, less power is filtered our resulting in less blur
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• We can see that image becomes more and more finer as amount of 

high frequency component removed decreases

• The ILPF is not practical. But their study will be useful for 
development of filter concepts

• Butterworth Lowpass Filter

• The transfer function of Butterworth LPF of the order n with cut 
off frequency D0 is given by 
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• .


