DERIVATION OF THE GRADIENT DESCENT RULE

- To calculate the direction of steepest descent along the error surface:
- This direction can be found by computing the derivative of *E* with respect to each component of the vector \vec{w} .
- This vector derivative is called the *gradient* of *E* with respect to \vec{w} written $\nabla E(\vec{w})$

$$
\nabla E(\vec{w}) \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots, \frac{\partial E}{\partial w_n}\right]
$$

• Since the gradient specifies the direction of steepest increase of *E,* the training rule for gradient descent is

$$
\vec{w} \leftarrow \vec{w} + \Delta \vec{w}
$$

where the contract of the cont

and the contract of

 $\Delta \vec{w} = -\eta \nabla E(\vec{w})$

• training rule can also be written in its component form

 $\label{eq:2.1} \begin{split} \mathcal{L}_{\text{max}}(\mathbf{r}) = \mathcal{L}_{\text{max}}(\mathbf{r}) \$

where

 $\label{eq:2.1} \begin{split} \mathcal{L}_{\text{max}}(\mathbf{r}) & = \mathcal{L}_{\text{max}}(\mathbf{r}) \mathcal{L}_{\text{max}}(\mathbf{r}) \\ & = \mathcal{L}_{\text{max}}(\mathbf{r}) \mathcal{L}_{\text{max}}(\mathbf{r}) \mathcal{L}_{\text{max}}(\mathbf{r}) \mathcal{L}_{\text{max}}(\mathbf{r}) \mathcal{L}_{\text{max}}(\mathbf{r}) \mathcal{L}_{\text{max}}(\mathbf{r}) \mathcal{L}_{\text{max}}(\mathbf{r}) \mathcal{L}_{\text{max}}(\mathbf{r}) \mathcal{L}_{\text{max}}(\mathbf$

 $\mathcal{A}^{\mathcal{A}}$

$$
w_i \leftarrow w_i + \Delta w_i
$$

$$
\Delta w_i = -\eta \frac{\partial E}{\partial w_i}
$$

$$
\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2
$$

$$
= \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} (t_d - o_d)^2
$$

$$
= \frac{1}{2} \sum_{d \in D} 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d)
$$

$$
= \sum_{d \in D} (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - \vec{w} \cdot \vec{x}_d)
$$

$$
\frac{\partial E}{\partial w_i} = \sum_{d \in D} (t_d - o_d) (-x_{id})
$$

Contractor

and the company of

So final standard GRADIENT DESCENT

$$
\Delta w_i = \eta \sum_{d \in D} (t_d - o_d) x_{id}
$$

STOCHASTIC APPROXIMATION TO GRADIENT DESCENT

• Gradient descent is a strategy for searching through a large or infinite hypothesis space that can be applied whenever

(1) the hypothesis space contains continuously parameterized hypotheses

(2) the error can be differentiated with respect to these hypothesis parameters.

- The key practical difficulties in applying gradient descent are
- (1) converging to a local minimum can sometimes be quite slow
- (2) if there are multiple local minima in the error surface, then there is no guarantee that the procedure will find the global minimum.

• One common variation on gradient descent intended to alleviate these difficulties is called *incremental gradient descent,* or alternatively *stochastic gradient descent.*

 $GRADIENT-DESCENT(training_example, \eta)$

Each training example is a pair of the form $\langle \vec{x}, t \rangle$, where \vec{x} is the vector of input values, and t is the target output value. η is the learning rate (e.g., .05).

- Initialize each w_i to some small random value
- Until the termination condition is met, Do
	- Initialize each Δw_i to zero.
	- For each $\langle \vec{x}, t \rangle$ in *training_examples*, Do
		- Input the instance \vec{x} to the unit and compute the output \vec{o}
		- For each linear unit weight w_i , Do

$$
\Delta w_i \leftarrow \Delta w_i + \eta (t - o) x_i \tag{T4.1}
$$

• For each linear unit weight w_i , Do

$$
w_i \leftarrow w_i + \Delta w_i \tag{T4.2}
$$

• Whereas the s**tandard gradient descent** training rule presented in Equation computes weight updates after summing over *all* the training examples in D, the idea behind **stochastic gradient descent** is to approximate this gradient descent search by updating weights incrementally, following the calculation of the error for *each* individual example.

$$
\Delta w_i = \eta(t - o) x_i
$$

$$
E_d(\vec{w}) = \frac{1}{2}(t_d - o_d)^2
$$

MULTILAYER NETWORKS AND THE BACKPROPAGATION ALGORITHM

• single perceptrons can only express linear decision surfaces.

A Differentiable Threshold Unit

-
-
-
-
-
- -
	-

The sigmoid threshold unit

• the sigmoid unit computes its output o as

and the control of the con-

and the state of the state

$$
o = \sigma(\vec{w} \cdot \vec{x})
$$

where

$$
\sigma(y) = \frac{1}{1+e^{-y}}
$$

$$
\frac{d\sigma(y)}{dy} = \sigma(y) \cdot (1 - \sigma(y))
$$

The BACKPROPAGATIAOIN Algorithm

• we begin by redefining E to sum the errors over all of the network output units:

$$
E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} \sum_{k \in outputs} (t_{kd} - o_{kd})^2
$$

 $\text{BACKPROPAGATION}(training_examples, \eta, n_{in}, n_{out}, n_{hidden})$

Each training example is a pair of the form $\langle \vec{x}, \vec{t} \rangle$, where \vec{x} is the vector of network input values, and \vec{t} is the vector of target network output values.

 η is the learning rate (e.g., .05). n_{in} is the number of network inputs, n_{hidden} the number of units in the hidden layer, and n_{out} the number of output units.

The input from unit i into unit j is denoted x_{ii} , and the weight from unit i to unit j is denoted w_{ji} .

• Create a feed-forward network with n_{in} inputs, n_{hidden} hidden units, and n_{out} output units.

- Initialize all network weights to small random numbers (e.g., between $-.05$ and 0.05).
- Until the termination condition is met, Do
	- For each $\langle \vec{x}, \vec{t} \rangle$ in *training examples*, Do

Propagate the input forward through the network:

1. Input the instance \vec{x} to the network and compute the output o_u of every unit u in the network.

Propagate the errors backward through the network:

2. For each network output unit k, calculate its error term δ_k

$$
\delta_k \leftarrow o_k (1 - o_k)(t_k - o_k) \tag{T4.3}
$$

3. For each hidden unit h, calculate its error term δ_h

$$
\delta_h \leftarrow o_h(1 - o_h) \sum_{k \in outputs} w_{kh} \delta_k \tag{T4.4}
$$

4. Update each network weight w_{ii}

$$
w_{ji} \leftarrow w_{ji} + \Delta w_{ji}
$$

where

$$
\Delta w_{ji} = \eta \, \delta_j \, x_{ji} \tag{T4.5}
$$

ADDING MOMENTUM

$\Delta w_{ji}(n) = \eta \, \delta_j \, x_{ji} + \alpha \, \Delta w_{ji}(n-1)$

 $\sim 10^{-1}$

LEARNING IN ARBITRARY ACYCLIC NETWORKS

$$
\delta_r = o_r (1 - o_r) \sum_{s \in layer m+1} w_{sr} \delta_s
$$

$$
\delta_r = o_r (1 - o_r) \sum_{s \in Downstream(r)} w_{sr} \delta_s
$$

Derivation of the BACKPROPAGATION Rule

• The specific problem we address here is deriving the stochastic gradient descent rule implemented by the algorithm

• Stochastic gradient descent involves iterating through the training examples one at a time, for each training example d descending the gradient of the error *E^d* with respect to this single example.

• In other words, for each training example *d* every weight w_{ji} is updated by adding to it ∇w_{ij}

 $\mathcal{A} \subset \mathcal{A}$

$$
\Delta w_{ji} = -\eta \frac{\partial E_d}{\partial w_{ji}}
$$

$$
E_d(\vec{w}) \equiv \frac{1}{2} \sum_{k \in outputs} (t_k - o_k)^2
$$

- x_{ii} = the *i*th input to unit *j*
- w_{ii} = the weight associated with the *i*th input to unit *j*
- $net_j = \sum_i w_{ji} x_{ji}$ (the weighted sum of inputs for unit j)
- o_i = the output computed by unit j
- t_i = the target output for unit j
- $\bullet \ \sigma$ = the sigmoid function
- \bullet *outputs* = the set of units in the final layer of the network
- Downstream(j) = the set of units whose immediate inputs include the output of unit $$

• To begin, notice that weight *wji* can influence the rest of the network only through *net^j .*

$$
\frac{\partial E_d}{\partial w_{ji}} = \frac{\partial E_d}{\partial net_j} \frac{\partial net_j}{\partial w_{ji}}
$$

$$
= \frac{\partial E_d}{\partial net_j} x_{ji}
$$

$$
(4.22)
$$

Case 1: Training Rule for Output Unit Weights.

• *net^j* can influence the network only through *oj*

$$
\frac{\partial E_d}{\partial net_j} = \frac{\partial E_d}{\partial o_j} \frac{\partial o_j}{\partial net_j}
$$

ا جيڪا

$$
\frac{\partial E_d}{\partial o_j} = \frac{\partial}{\partial o_j} \frac{1}{2} \sum_{k \in outputs} (t_k - o_k)^2
$$

$$
\frac{\partial E_d}{\partial o_j} = \frac{\partial}{\partial o_j} \frac{1}{2} (t_j - o_j)^2
$$

$$
= \frac{1}{2} 2 (t_j - o_j) \frac{\partial (t_j - o_j)}{\partial o_j}
$$

$$
= -(t_j - o_j)
$$

$$
\frac{\partial o_j}{\partial net_j} = \frac{\partial \sigma(net_j)}{\partial net_j}
$$

= $o_j(1-o_j)$

 \bullet So,

$$
\frac{\partial E_d}{\partial net_j} = -(t_j - o_j) o_j (1 - o_j)
$$

 $\mathcal{L}(\mathcal{L}(\mathcal{L}))$ and $\mathcal{L}(\mathcal{L}(\mathcal{L}))$. The set of $\mathcal{L}(\mathcal{L})$

the control of the state of the con-

• Finally, we have the stochastic gradient descent rule for *output units*

 $\Delta_{\rm c}$

$$
\Delta w_{ji} = -\eta \frac{\partial E_d}{\partial w_{ji}} = \eta (t_j - o_j) o_j (1 - o_j) x_{ji}
$$

Case 2: Training Rule for Hidden Unit Weights

• *net^j* can influence the network outputs (and therefore *E^d)* only through the units in *Downstream(j).*

Rearranging terms and using δ_j to denote $-\frac{\partial E_d}{\partial net_i}$, we have $\delta_j = o_j(1 - o_j)$ $\sum \delta_k w_{kj}$ $k \in Downstream(j)$

 \mathbf{u}

 \bullet So,

$\Delta w_{ji} = \eta \delta_j x_{ji}$