DERIVATION OF THE GRADIENT
DESCENT RULE



* To calculate the direction of steepest descent
along the error surface:

* This direction can be found by computing the
derivative of E with respect to each
component of the vector w.

* This vector derivative is called the gradient of
E with respect to w written VE (w)
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* Since the gradient specifies the direction of
steepest increase of E, the training rule for
gradient descent is

where



* training rule can also be written in its
component form

w; < w; + Aw;
where
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So final standard GRADIENT DESCENT
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STOCHASTIC APPROXIMATION TO
GRADIENT DESCENT

* Gradient descent is a strategy for searching
through a large or infinite hypothesis space
that can be applied whenever

(1) the hypothesis space contains continuously
parameterized hypotheses

(2) the error can be differentiated with respect
to these hypothesis parameters.



* The key practical difficulties in applying
gradient descent are

(1) converging to a local minimum can
sometimes be quite slow

(2) if there are multiple local minima in the error
surface, then there is no guarantee that the
procedure will find the global minimum.



* One common variation on gradient descent
intended to alleviate these difficulties is called
incremental gradient descent, or alternatively
stochastic gradient descent.



m
GRADIENT-DESCENT(training examples, n)

Each training example is a pair of the form (%, 1), where % is the vector of input values, and
t is the target output value. n is the leaming rate (e.g., .05).

+ Initialize each w; to some small random value

o Until the termination condition is met, Do
o Initialize each Aw; to zero.
o For each (x,t) In training_examples, Do
o Input the instance x to the unit and compute the output o
o For each linear unit weight w;, Do

Aw; « Aw; +1(t = o)x; (T4.1)
o For each linear unit weight uy;, Do

w; < w; + Aw; (T4.2)




* Whereas the standard gradient descent
training rule presented in Equation computes
weight updates after summing over all the
training examples in D, the idea behind
stochastic gradient descent is to approximate
this gradient descent search by updating
weights incrementally, following  the
calculation of the error for each individual
example.
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MULTILAYER NETWORKS AND
THE BACKPROPAGATION ALGORITHM

* single perceptrons can only express linear
decision surfaces.



A Differentiable Threshold Unit



The sigmoid threshold unit
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* the sigmoid unit computes its output o as

o=o(w-X)

where

oY) = 1325
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The BACKPROPAGATIAOIN Algorithm

* we begin by redefining E to sum the errors
over all of the network output units:

EW) = Z Z (&d-ﬂkd
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BACKPROPAGATION(tragining _examples, n, Nin, Aoyt » Rhidden
Each training example is a pair of the form (%¥,1 ), where X is the vector of network input
values, and [ is the vector of target network output values.
77 ix the learning rate (e.g., .05). n;, is the number of network inputs, nuiggen the number of
units in the hidden layer, and ng,, the number of outpur unirs.
The input from unit i inte unit j is denoted x;;, and the weight from unit i to unit j is denoted
: LTS
» Create a feed-forward network with n;, inputs, np;g4e. hidden units, and n,,, output units.
o Initialize all network weights to small random numbers (e.g., between —.05 and .05).
e Until the termination condition is met, Do

e For each {¥,7 ) in training _examples, Do

Propagate the input forward through the network:

1. Input the instance X to the network and compute the output o, of every unit u in
the network.

Propagate the errors backward through the network:
2. For each network output unit k, calculate its error term 5

8g +— og(1 — ogXitx — ok) (T4.3)
3. For each hidden uanit A, calculate its error term &g
8y — op(l —op) E Wi n &g . (T4.4)
keoutputs

4. Update each network weight w;;
Wi — Wi + Awj;

where
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ADDING MOMENTUM
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LEARNING IN ARBITRARY ACYCLIC
NETWORKS
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Derivation of the
BACKPROPAGATION Rule

* The specific problem we address here is
deriving the stochastic gradient descent rule
implemented by the algorithm



e Stochastic gradient descent involves iterating
through the training examples one at a time,
for each training example d descending the
gradient of the error E; with respect to this
single example.



* |In other words, for each training example d
every weight w; is updated by adding to it
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o x;; = the ith mput to unit j

o wj;; = the weight associated with the ith tput to unit j

o netj = ) . w;x;; (the weighted sum of inputs for unit ;)

o 0; = the output computed by unit

o /; = the target output for unit j

¢ ¢ = the sigmoid function

o outputs = the set of units in the final layer of the network

¢ Downstream(j) = the set of units whose immediate inputs include the
output of unit



1.

* To begin, notice that weight w; can influence
the rest of the network only through net.
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Case 1: Training Rule for Output Unit
Weights.

* net; can influence the network only through o;
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* So,
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* Finallyy, we have the stochastic gradient
descent rule for output units
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Case 2: Training Rule for Hidden Unit
Weights



* net; can influence the network outputs (and
therefore E;) only through the wunits in
Downstream(j).
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Rearranging terms and using §; to denote -;Tif;, we have
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* So,

Awj = n 8; Xxj;



